1.3. Научная картина мира
Под научной картиной мира понимают целостную систему общих представлений о мире, вырабатываемую путем обобщения и синтеза знаний, почерпнутых из различных наук – естественных и социальных. Это общее понятие разделяется на естественно-научную и социальную картины мира. Естественно-научная картина мира представляет собой совокупность существующих научных представлений о строении и развитии природы. В свою очередь, естественно-научная картина мира разделяется на физическую, химическую, биологическую и т.д., т.е. специальные картины мира. Здесь термин «мир» обозначает уже не природный мир в целом, а тот его фрагмент, который изучается данной наукой с помощью ее понятий, представлений и методов. В системе общих представлений о мире всегда доминирует та ее часть, которая опирается на науку, достигшую ведущего положения в системе знаний. Поскольку среди других наук на роль лидера больше всего претендовала физика, то физические картины мира превалировали в составе общей картины мира на разных этапах ее развития. Вначале это была механическая картина мира, затем электродинамическая, сейчас формируется квантово-релятивистская.
Термином «физическая картина мира» широко пользовался Макс Планк. Под физической картиной мира он понимал «образ мира», формируемый в физической науке и отражающий реальные закономерности природы. Физическая картина мира, подчеркивал М.Планк, изменяется в процессе развития науки и поэтому имеет относительный характер[39]. Создание такой картины мира, которая представляла бы собой нечто абсолютное, окончательно завершенное и не нуждалось бы в дальнейших улучшениях, Планк считал недостижимой задачей. Луи де Бройль по этому поводу писал [6]:
«История науки показывает нам науку в процессе постоянного развития, науку, непрерывно перерабатывающую и пересматривающую накопленные знания и их истолкование; она показывает нам прошлое, которое, несмотря на многие недостатки, подготавливает настоящее. Но мы никогда не должны забывать, что наша современная наука является лишь временной ступенью научного процесса, что она сама, несомненно, изобилует недостатками и ошибками и что ее роль с этой точки зрения заключается как раз в подготовке будущего. Величайшей ошибкой, которую, кстати, очень легко допустить, было бы мнение о том, что современные представления науки являются окончательными. Часто люди справедливо восторгаются последними достижениями науки и хотят на их основе совершить чрезмерную и опасную экстраполяцию, тщетность которой будет показана будущим развитием науки».
В состав научной картины мира включаются: система понятий, с помощью которых описывается действительность (материя, движение, пространство, время и т.д.); принципы, на основе которых объясняется мир (принцип материального единства мира, принцип причинности, принцип всеобщей связи и взаимообусловленности явлений и т.д.); общенаучные понятия и законы (закон сохранения и превращения энергии и т.д.); фундаментальные понятия отдельных наук (вещество, поле, вакуум, энергия, химический элемент, биологический вид, ген и т.д.); совокупность наглядных представлений о мире (различные модели строения атома, Вселенной и т.д.). Научная картина мира связана и с реальным опытом. Когда начинают изучаться объекты, для объяснения которых теории еще нет, в соответствии с той или иной научной картиной мира проводятся наблюдения, ставятся эксперименты по выявлению природы изучаемых объектов. Полученные таким образом данные могут уточнять и конкретизировать картину мира. Научная картина мира задает систематизацию знаний в рамках конкретной науки и функционирует в качестве научно-исследовательской программы или парадигмы, определяющих постановку задач и выбор средств их решения. Научная картина мира тесно связана с мировоззрением, являясь одним из действенных способов его формирования.
Главное отличие научной картины мира от донаучной или вненаучной (например, религиозной) состоит в том, что она строится на основе определенной фундаментальной научной теории (или теорий), служащей ее основанием. Так, физическая картина мира XVII – XIX веков строилась на базе классической механики, а современная физическая картина мира – на базе квантовой механики, специальной и общей теории относительности.
- Федеральное агентство по образованию
- Брянский государственный технический университет
- В.И.Попков
- Концепции современного естествознания
- Введение
- Часть 1. Логика и методология естественных наук
- 1.1.Предмет естествознания
- 1.2. Культура и наука
- 1.3. Научная картина мира
- 1.4. Связь науки с другими компонентами культуры
- 1.5. Виды научного знания
- 1.6. Проблема культур в науке
- 1.7. Материя и движение
- 1.8. Пространство и время
- 1.9. Материальное единство мира
- 1.10. Характерные черты науки
- 1.11. Мышление
- 1.12. Структура научного познания
- 1.13. Методы научного познания
- 1.13.1. Философские методы
- 1.13.2. Общенаучные методы
- 1.13.2.1.Эмпирические методы исследования
- 1.13.2.2. Методы теоретического познания
- 1.13.2.3. Общелогические методы и приемы
- 1.13.2.4. Математика – универсальный язык естествознания
- 1.13.3 .Прочие методы
- 1.14. Гипотеза и теория
- 1.15. Критерии научного знания
- 1.16. Модели развития науки
- 1.17. Дифференциация и интеграция в науке
- 1.18. Принципы организации современного естествознания. Системный метод в современном естествознании
- 1.19. Особенности современной научной картины мира
- Часть 2. Основные физические концепции
- 2.1. Концепция детерминизма в классическом естествознании
- 2.1.1. Триумф небесной механики и детерминизм Лапласа
- 2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике
- 2.1.3. Связь законов сохранения с фундаментальной симметрией пространства и времени.
- 2.2.2. Континуальный подход в механике сплошных сред
- 2.2.3. Концепция близкодействия и материальные физические поля
- 2.2.4. Классические представления о природе света
- 2.2.5. Апофеоз классического естествознания
- 2.3. Развитие представлений о пространстве и времени в естествознании
- 2.3.1. Пространство и время в античной натурфилософии
- 2.3.2. Абсолютное пространство и абсолютное время в классическом естествознании
- 2.3.3. Уравнения Максвелла и концепция абсолютно неподвижного эфира
- 2.3.4. Элементы специальной и общей теории относительности
- 2.3.4.1.Постулаты Эйнштейна
- 2.3.4.2. Преобразования Лоренца
- 2.3.4.3. Следствия из преобразований Лоренца
- 1.Одновременность событий в разных системах отсчета
- 2. Длина тел в разных системах отсчета
- 3. Длительность событий в разных системах отсчета
- 4. Закон сложения скоростей в релятивистской механике
- 2.3.4.4. Интервал
- 2.3.4.5. Основы релятивистской динамики
- 1. Релятивистский импульс
- 2.Зависимость массы от скорости
- 3. Взаимосвязь массы и энергии
- 4. Энергия связи
- 5. Частицы с нулевой массой покоя
- 2.3.4.6. Четырехмерное пространство-время в общей теории относительности
- 2.3.4.7. Релятивизм как концептуальный принцип неклассического естествознания
- 2.4. Статистические закономерности в приРоде
- 2.4.1. «Стрела времени» и проблема необратимости в естествознании
- 2.4.2. Возникновение статистической механики.
- 2.4.3. Особенности описания состояний в статистических теориях.
- 2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
- 2.4.5. Гипотеза Томсона и «тепловая смерть» Вселенной.
- 2.5. Микромир и основные концепции неклассического естествознания
- 2.5.1. Зарождение квантовых представлений в физике
- 2.5.2. Особенности неклассического подхода к описанию динамики микрочастиц
- 2.5.3. Квантовая природа агрегатных состояний макроскопических объектов
- 2.6. На пути к единой фундаментальной теории материи
- 2.6.1. Становление субатомной физики
- 2.6.2. Фундаментальные взаимодействия в природе
- 2.6.3. Стандартная модель элементарных частиц
- 2.6.4. На переднем крае физики микромира
- Часть 3. Мегамир: современные астрофизические и космологические концепции
- 3.1. Звездная форма бытия космической материи
- 3.2. Эволюция звезд
- 3.3. Современные космологические модели вселенной
- 3.4. Происхождение и развитие вселенной
- 3.5. Солнечная система
- 3.5.1. Солнце
- 3.5.2. Планеты солнечной системы
- 3.5.2.1. Земля
- 3.5.2.2. Луна
- 3.5.2.3. Меркурий
- 3.5.2.4.Венера
- 3.5.2.5. Марс
- 3.5.2.6. Юпитер
- Часть 4. Основные химические концепции
- 4.1. Учение о составе
- 4.2.Структура вещества и химические системы
- 4.3. Учение о химических процессах
- 4.4. Эволюционная химия – высший уровень развития химических знаний
- Часть 5. Биологический уровень организации материи
- 5.1. Предмет биологии и ее структура
- 5.2. Основные признаки живого
- 5.3. Структурные уровни живого
- 5.4. Клетка, ее строение и функционирование
- 5.5. Химические основы жизни. Генетика
- 5.6. Принципы биологической эволюции
- 5.7. Концепции возникновения жизни на земле
- 5.8. Исторические этапы развития жизни на земле
- Енисей (1,5 млрд. Лет – 1,2 млрд. Лет) Появляются многоклеточные водоросли.
- Часть 6. Человек как феномен природы
- 6.1. Происхождение человека
- 6. 2. Биологическое и социальное в развитии человека
- 6.3. Превращение биосферы в ноосферу
- 6.4. Глобальные проблемы человечества
- Часть 7. Самоорганизация в живой и неживой природе
- 7.1. Кибернетика и общие проблемы управления
- В сложных динамических системах
- В создании кибернетики принимали участие многие ученые: д. Биглоу, к. Шеннон, и.М. Сеченов, и.П. Павлов, а.М. Ляпунов, а.А. Марков, а.Н. Колмогоров и др.
- Энергия
- 7.2. Синергетика – новое направление междисциплинарных исследований
- 7.3 Характеристики самоорганизующихся систем
- 7.4. Закономерности самоорганизации
- 7.5. Физические модели самоорганизации в экономике
- Персоналии
- Цитатник
- Список использованной и рекомендуемой литературы
- Часть 1. Логика и методология естественных
- Часть 2. Основные физические концепции...104
- Часть 3. Мегамир: современные астрофизи-ческие и космологические концепции……..180