logo
ПОПКОВ В

4. Закон сложения скоростей в релятивистской механике

Пусть относительно системы К′ материальная точка движется со скоростью u (Рис. 2.3.2). Найдем скорость u материальной точки относительно системы К. Проекции скоростей u и u′ на оси координат в системах К и К′ соответственно можно представить следующим образом:

, , , , , . (2.3.10)

Согласно преобразованиям Лоренца (4 – 7),

, , , . (2.3.11)

Рис. 2.3.2

Подставив выражения (2.3.11) в (2.3.10), поcле преобразований получим релятивистский закон сложения скоростей:

, (2.3.12)

, (2.3.13)

. (2.3.14)

Если скорости v и u малы по сравнению со скоростью света, то выражения (2.3.12) – (2.3.14) переходят в закон сложения скоростей в классической механике:

, , . (2.3.15)

Пусть материальная точка движется параллельно оси х .

Тогда и релятивистский закон сложения скоростей (2.3.12) принимает вид:

. (2.3.16)

Если в системе К′ , то в системе К ,

т.е. при сложении двух скоростей результирующая скорость оказалась равной скорости света в вакууме, что является подтверждением второго постулата Эйнштейна.