2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
Еще до возникновения статистической термодинамики и даже до перехода к молекулярно-кинетическим представлениям о природе теплоты были известны два основных закона термодинамики, которые обобщали известные к тому времени опытные факты. Один их них - первое начало термодинамики - являлся фактически законом сохранения энергии и формулировался следующим образом: количество теплоты Q, сообщенное системе (например, газу), равно сумме приращения ее внутренней энергии U и совершенной механической работы A:
Q = U + A (2.4.2)
Этот закон, однако, ничего не говорил о направлении протекания тепловых процессов. Например, ему не противоречит замерзание некоторого объема воды, помещенного в раскаленную печку. Необратимость тепловых процессов отражает специальный закон - второе начало термодинамики, имеющий несколько эквивалентных формулировок, таких как:
- тепло не может самопроизвольно перетекать от холодного тела к горячему;
- нельзя построить вечный двигатель 2-го рода, который совершал бы полезную работу только за счет охлаждения теплового резервуара;
- энтропия замкнутой системы является неубывающей функцией, т. е. при любом реальном процессе она либо возрастает, либо остается неизменной.
Понятие энтропии, введенной в термодинамику Клаузиусом, носило первоначально искусственный характер. Знаменитый французский ученый А. Пуанкаре писал по этому поводу: «Энтропия представляется несколько таинственной в том смысле, что величина эта недоступна ни одному из наших чувств, хотя и обладает действительным свойством физических величин, потому что по крайней мере в принципе вполне поддается измерению».
По определению Клаузиуса, энтропией называется такая физическая величина, приращение которой S равно количеству тепла Q, полученному системой, деленному на абсолютную температуру
S = Q / T (2.4.3)
Если два тела, имеющие разные температуры Т1 и Т2 (Т1Т2), привести в тепловой контакт, то изменение энтропии этой системы S будет складываться из изменения энтропии первого тела S1 и изменения энтропии второго тела S2: S = S1 + S2. Пусть первое тело, как более горячее, отдает второму небольшое количество тепла Q, тогда S1 = - Q/T1, S2 = Q/T2, S = Q (1/T2 - 1/T1) 0. Таким образом, при перетекании тепла от горячего тела к холодному энтропия системы, действительно, возрастает. «Энтропия является, следовательно, величиной, - продолжает Пуанкаре, - в некотором роде измеряющей эволюцию данной системы или по крайней мере указывающей направление этой эволюции».
Физическая сущность понятия энтропии была «вскрыта» статистической механикой. Оказалось, что энтропия S - это не что иное как умноженный на постоянную Больцмана k = 1,38 10-23 Дж/К натуральный логарифм вероятности Р данного состояния макроскопической системы
S = k lnP (2.4.4)
При таком определении энтропии становится понятным, что возрастание энтропии замкнутой системы - это всего лишь естественный переход системы в наиболее вероятное состояние. С понятием вероятности состояния, а, следовательно, с энтропией связано представление об упорядоченности системы. Чем больше порядок в системе (например, все молекулы идеального газа находятся в одной точке пространства), тем меньше ее энтропия и меньше вероятность такого состояния. Наоборот, чем меньше упорядочена система - тем больше ее энтропия, больше вероятность такого состояния. Таким образом, статистический смысл второго начала термодинамики заключается в том, что изолированные системы самопроизвольно переходят из упорядоченного в неупорядоченные состояния.
- Федеральное агентство по образованию
- Брянский государственный технический университет
- В.И.Попков
- Концепции современного естествознания
- Введение
- Часть 1. Логика и методология естественных наук
- 1.1.Предмет естествознания
- 1.2. Культура и наука
- 1.3. Научная картина мира
- 1.4. Связь науки с другими компонентами культуры
- 1.5. Виды научного знания
- 1.6. Проблема культур в науке
- 1.7. Материя и движение
- 1.8. Пространство и время
- 1.9. Материальное единство мира
- 1.10. Характерные черты науки
- 1.11. Мышление
- 1.12. Структура научного познания
- 1.13. Методы научного познания
- 1.13.1. Философские методы
- 1.13.2. Общенаучные методы
- 1.13.2.1.Эмпирические методы исследования
- 1.13.2.2. Методы теоретического познания
- 1.13.2.3. Общелогические методы и приемы
- 1.13.2.4. Математика – универсальный язык естествознания
- 1.13.3 .Прочие методы
- 1.14. Гипотеза и теория
- 1.15. Критерии научного знания
- 1.16. Модели развития науки
- 1.17. Дифференциация и интеграция в науке
- 1.18. Принципы организации современного естествознания. Системный метод в современном естествознании
- 1.19. Особенности современной научной картины мира
- Часть 2. Основные физические концепции
- 2.1. Концепция детерминизма в классическом естествознании
- 2.1.1. Триумф небесной механики и детерминизм Лапласа
- 2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике
- 2.1.3. Связь законов сохранения с фундаментальной симметрией пространства и времени.
- 2.2.2. Континуальный подход в механике сплошных сред
- 2.2.3. Концепция близкодействия и материальные физические поля
- 2.2.4. Классические представления о природе света
- 2.2.5. Апофеоз классического естествознания
- 2.3. Развитие представлений о пространстве и времени в естествознании
- 2.3.1. Пространство и время в античной натурфилософии
- 2.3.2. Абсолютное пространство и абсолютное время в классическом естествознании
- 2.3.3. Уравнения Максвелла и концепция абсолютно неподвижного эфира
- 2.3.4. Элементы специальной и общей теории относительности
- 2.3.4.1.Постулаты Эйнштейна
- 2.3.4.2. Преобразования Лоренца
- 2.3.4.3. Следствия из преобразований Лоренца
- 1.Одновременность событий в разных системах отсчета
- 2. Длина тел в разных системах отсчета
- 3. Длительность событий в разных системах отсчета
- 4. Закон сложения скоростей в релятивистской механике
- 2.3.4.4. Интервал
- 2.3.4.5. Основы релятивистской динамики
- 1. Релятивистский импульс
- 2.Зависимость массы от скорости
- 3. Взаимосвязь массы и энергии
- 4. Энергия связи
- 5. Частицы с нулевой массой покоя
- 2.3.4.6. Четырехмерное пространство-время в общей теории относительности
- 2.3.4.7. Релятивизм как концептуальный принцип неклассического естествознания
- 2.4. Статистические закономерности в приРоде
- 2.4.1. «Стрела времени» и проблема необратимости в естествознании
- 2.4.2. Возникновение статистической механики.
- 2.4.3. Особенности описания состояний в статистических теориях.
- 2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
- 2.4.5. Гипотеза Томсона и «тепловая смерть» Вселенной.
- 2.5. Микромир и основные концепции неклассического естествознания
- 2.5.1. Зарождение квантовых представлений в физике
- 2.5.2. Особенности неклассического подхода к описанию динамики микрочастиц
- 2.5.3. Квантовая природа агрегатных состояний макроскопических объектов
- 2.6. На пути к единой фундаментальной теории материи
- 2.6.1. Становление субатомной физики
- 2.6.2. Фундаментальные взаимодействия в природе
- 2.6.3. Стандартная модель элементарных частиц
- 2.6.4. На переднем крае физики микромира
- Часть 3. Мегамир: современные астрофизические и космологические концепции
- 3.1. Звездная форма бытия космической материи
- 3.2. Эволюция звезд
- 3.3. Современные космологические модели вселенной
- 3.4. Происхождение и развитие вселенной
- 3.5. Солнечная система
- 3.5.1. Солнце
- 3.5.2. Планеты солнечной системы
- 3.5.2.1. Земля
- 3.5.2.2. Луна
- 3.5.2.3. Меркурий
- 3.5.2.4.Венера
- 3.5.2.5. Марс
- 3.5.2.6. Юпитер
- Часть 4. Основные химические концепции
- 4.1. Учение о составе
- 4.2.Структура вещества и химические системы
- 4.3. Учение о химических процессах
- 4.4. Эволюционная химия – высший уровень развития химических знаний
- Часть 5. Биологический уровень организации материи
- 5.1. Предмет биологии и ее структура
- 5.2. Основные признаки живого
- 5.3. Структурные уровни живого
- 5.4. Клетка, ее строение и функционирование
- 5.5. Химические основы жизни. Генетика
- 5.6. Принципы биологической эволюции
- 5.7. Концепции возникновения жизни на земле
- 5.8. Исторические этапы развития жизни на земле
- Енисей (1,5 млрд. Лет – 1,2 млрд. Лет) Появляются многоклеточные водоросли.
- Часть 6. Человек как феномен природы
- 6.1. Происхождение человека
- 6. 2. Биологическое и социальное в развитии человека
- 6.3. Превращение биосферы в ноосферу
- 6.4. Глобальные проблемы человечества
- Часть 7. Самоорганизация в живой и неживой природе
- 7.1. Кибернетика и общие проблемы управления
- В сложных динамических системах
- В создании кибернетики принимали участие многие ученые: д. Биглоу, к. Шеннон, и.М. Сеченов, и.П. Павлов, а.М. Ляпунов, а.А. Марков, а.Н. Колмогоров и др.
- Энергия
- 7.2. Синергетика – новое направление междисциплинарных исследований
- 7.3 Характеристики самоорганизующихся систем
- 7.4. Закономерности самоорганизации
- 7.5. Физические модели самоорганизации в экономике
- Персоналии
- Цитатник
- Список использованной и рекомендуемой литературы
- Часть 1. Логика и методология естественных
- Часть 2. Основные физические концепции...104
- Часть 3. Мегамир: современные астрофизи-ческие и космологические концепции……..180