1.8. Пространство и время
Материя существует и движется во времени и пространстве, которые являются формами бытия материи, ее атрибутами. Пространство есть форма бытия материи, характеризующая ее протяженность, структурность, сосуществование и взаимодействие элементов во всех материальных системах. Можно сказать, что пространство – форма координации одновременно существующих объектов, выражает порядок сосуществования отдельных объектов. Время – форма бытия материи, выражающая длительность ее существования, последовательность смены состояний в изменении и развитии всех материальных систем. Время – форма координации сменяющих друг друга объектов, отражает порядок смены явлений. Порядок сосуществования объектов образует структуру пространства, порядок смены этих состояний образует структуру времени. Пространство и время неразрывно связаны между собой, их единство проявляется в движении и развитии материи.
Пространство и время являются основными понятиями всех разделов физики. Они играют главную роль на эмпирическом уровне физического познания: непосредственное содержание результатов наблюдений и экспериментов состоит в фиксации пространственно-временных совпадений. Пространство и время служат также одними из важнейших средств конструирования теоретических моделей, интерпретирующих экспериментальные данные. Пространство и время имеют решающее значение для построения научной картины мира, обеспечивая отождествление и различение отдельных фрагментов материальной действительности. В физике свойства пространства и времени делят на метрические (протяженность, длительность) и топологические (размерность, непрерывность и связность пространства и времени, порядок и направление времени) [17].
В механической картине мира, созданной И.Ньютоном, пространство и время носили абсолютный характер. Согласно И.Ньютону, абсолютное пространство и время представляли собой самостоятельные сущности, которые не зависели ни друг от друга, ни от находящихся в них материальных объектов и протекающих в них процессов. По Ньютону пространство неизменно и неподвижно, не зависит от материальных тел и их движения; время абсолютно и течет везде одинаково.
Современной теорией свойств пространства и времени является теория относительности – специальная и общая, развитые А.Эйнштейном. Специальная теория относительности выявила зависимость пространственных и временных характеристик объектов от скорости их движения относительно определенной системы отсчета и объединила пространство и время в единый четырехмерный пространственно-временной континуум – пространство-время. А.Эйнштейн писал [68]:
«Прежде считали, что если все материальные тела исчезнут из Вселенной, время и пространство сохранятся. Согласно же теории относительности, время и пространство исчезнут вместе с телами».
Общая теория относительности вскрыла зависимость метрических характеристик пространства-времени от распределения гравитационных масс, приводящих к искривлению пространства-времени. В общей теории относительности от характера распределения масс зависят такие фундаментальные свойства пространства-времени, как конечность и бесконечность, которые тоже обнаружили свою относительность.
Свойства пространства, по современным представлениям, таковы:
- объективность, т.е. независимость от сознания человека;
- всеобщность – не существует материи без пространства;
- однородность – все точки пространства обладают одинаковыми свойствами (параллельный перенос не изменяет законов природы);
- изотропность – все направления в пространстве обладают одинаковыми свойствами (поворот на любой угол не изменяет законов природы);
- непрерывность – между двумя точками пространства, как бы близко они ни находились, всегда можно найти третью;
- связность – между точками пространства нет разрывов;
- трехмерность – каждая точка пространства однозначно определяется тремя координатами, все материальные процессы и взаимодействия реализуются лишь в пространстве трех измерений.
Пространству свойственна относительная прерывность, проявляющаяся в раздельном существовании материальных объектов и систем, имеющих определенные размеры и границы, в существовании многообразия структурных уровней материи с различными пространственными отношениями.
В современной физике и математике широко применяются абстрактные (концептуальные) многомерные пространства, которые образуются путем добавления к трем пространственным координатам времени и других параметров, учет взаимной связи и изменения которых необходим для более полного описания процессов. Однако не следует отождествлять эти концептуальные пространства, вводимые как способ описания систем, с реальным пространством, которое всегда трехмерно и характеризует протяженность и структурность материи, сосуществование и взаимодействие элементов в различных системах.
Свойства времени таковы:
- объективность;
- всеобщность;
- необратимость – причинно-следственные отношения асимметричны, время всегда направлено от прошлого к будущему;
- одномерность;
- связность;
- однородность – явления, протекающие в одинаковых условиях, но в разные моменты времени, протекают одинаково;
- непрерывность – между двумя моментами времени всегда можно выделить третий.
Однородность и изотропность пространства и однородность времени называются свойствами симметрии пространства и времени. Из свойств симметрии пространства и времени следует симметрия (инвариантность) физических законов по отношению к следующим непрерывным преобразованиям пространства-времени: перенос (сдвиг) или поворот системы как целого в пространстве; изменение начала отсчета времени (сдвиг во времени). При этих преобразованиях законы, устанавливающие соотношения между величинами, характеризующими физическую систему, не меняются. Другими словами, поведение изолированной механической системы не зависит от того, какой момент времени принят за начало отсчета, в каком месте пространства помещено начало координат и как ориентированы в пространстве оси координат.
В 1918 г. немецкий математик Э.Нетер сформулировала теоему, согласно которой для физической системы, движение которой описывается некоторым дифференциальным уравнением, каждому непрерывному преобразованию пространства и времени соответствует определенный закон сохранения. Таким образом была установлена взаимосвязь свойств симметрии пространства и времени с законами сохранения. Закон сохранения импульса вытекает из однородности пространства, закон сохранения энергии – из однородности времени, закон сохранения момента импульса – из изотропности пространства [49].
- Федеральное агентство по образованию
- Брянский государственный технический университет
- В.И.Попков
- Концепции современного естествознания
- Введение
- Часть 1. Логика и методология естественных наук
- 1.1.Предмет естествознания
- 1.2. Культура и наука
- 1.3. Научная картина мира
- 1.4. Связь науки с другими компонентами культуры
- 1.5. Виды научного знания
- 1.6. Проблема культур в науке
- 1.7. Материя и движение
- 1.8. Пространство и время
- 1.9. Материальное единство мира
- 1.10. Характерные черты науки
- 1.11. Мышление
- 1.12. Структура научного познания
- 1.13. Методы научного познания
- 1.13.1. Философские методы
- 1.13.2. Общенаучные методы
- 1.13.2.1.Эмпирические методы исследования
- 1.13.2.2. Методы теоретического познания
- 1.13.2.3. Общелогические методы и приемы
- 1.13.2.4. Математика – универсальный язык естествознания
- 1.13.3 .Прочие методы
- 1.14. Гипотеза и теория
- 1.15. Критерии научного знания
- 1.16. Модели развития науки
- 1.17. Дифференциация и интеграция в науке
- 1.18. Принципы организации современного естествознания. Системный метод в современном естествознании
- 1.19. Особенности современной научной картины мира
- Часть 2. Основные физические концепции
- 2.1. Концепция детерминизма в классическом естествознании
- 2.1.1. Триумф небесной механики и детерминизм Лапласа
- 2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике
- 2.1.3. Связь законов сохранения с фундаментальной симметрией пространства и времени.
- 2.2.2. Континуальный подход в механике сплошных сред
- 2.2.3. Концепция близкодействия и материальные физические поля
- 2.2.4. Классические представления о природе света
- 2.2.5. Апофеоз классического естествознания
- 2.3. Развитие представлений о пространстве и времени в естествознании
- 2.3.1. Пространство и время в античной натурфилософии
- 2.3.2. Абсолютное пространство и абсолютное время в классическом естествознании
- 2.3.3. Уравнения Максвелла и концепция абсолютно неподвижного эфира
- 2.3.4. Элементы специальной и общей теории относительности
- 2.3.4.1.Постулаты Эйнштейна
- 2.3.4.2. Преобразования Лоренца
- 2.3.4.3. Следствия из преобразований Лоренца
- 1.Одновременность событий в разных системах отсчета
- 2. Длина тел в разных системах отсчета
- 3. Длительность событий в разных системах отсчета
- 4. Закон сложения скоростей в релятивистской механике
- 2.3.4.4. Интервал
- 2.3.4.5. Основы релятивистской динамики
- 1. Релятивистский импульс
- 2.Зависимость массы от скорости
- 3. Взаимосвязь массы и энергии
- 4. Энергия связи
- 5. Частицы с нулевой массой покоя
- 2.3.4.6. Четырехмерное пространство-время в общей теории относительности
- 2.3.4.7. Релятивизм как концептуальный принцип неклассического естествознания
- 2.4. Статистические закономерности в приРоде
- 2.4.1. «Стрела времени» и проблема необратимости в естествознании
- 2.4.2. Возникновение статистической механики.
- 2.4.3. Особенности описания состояний в статистических теориях.
- 2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
- 2.4.5. Гипотеза Томсона и «тепловая смерть» Вселенной.
- 2.5. Микромир и основные концепции неклассического естествознания
- 2.5.1. Зарождение квантовых представлений в физике
- 2.5.2. Особенности неклассического подхода к описанию динамики микрочастиц
- 2.5.3. Квантовая природа агрегатных состояний макроскопических объектов
- 2.6. На пути к единой фундаментальной теории материи
- 2.6.1. Становление субатомной физики
- 2.6.2. Фундаментальные взаимодействия в природе
- 2.6.3. Стандартная модель элементарных частиц
- 2.6.4. На переднем крае физики микромира
- Часть 3. Мегамир: современные астрофизические и космологические концепции
- 3.1. Звездная форма бытия космической материи
- 3.2. Эволюция звезд
- 3.3. Современные космологические модели вселенной
- 3.4. Происхождение и развитие вселенной
- 3.5. Солнечная система
- 3.5.1. Солнце
- 3.5.2. Планеты солнечной системы
- 3.5.2.1. Земля
- 3.5.2.2. Луна
- 3.5.2.3. Меркурий
- 3.5.2.4.Венера
- 3.5.2.5. Марс
- 3.5.2.6. Юпитер
- Часть 4. Основные химические концепции
- 4.1. Учение о составе
- 4.2.Структура вещества и химические системы
- 4.3. Учение о химических процессах
- 4.4. Эволюционная химия – высший уровень развития химических знаний
- Часть 5. Биологический уровень организации материи
- 5.1. Предмет биологии и ее структура
- 5.2. Основные признаки живого
- 5.3. Структурные уровни живого
- 5.4. Клетка, ее строение и функционирование
- 5.5. Химические основы жизни. Генетика
- 5.6. Принципы биологической эволюции
- 5.7. Концепции возникновения жизни на земле
- 5.8. Исторические этапы развития жизни на земле
- Енисей (1,5 млрд. Лет – 1,2 млрд. Лет) Появляются многоклеточные водоросли.
- Часть 6. Человек как феномен природы
- 6.1. Происхождение человека
- 6. 2. Биологическое и социальное в развитии человека
- 6.3. Превращение биосферы в ноосферу
- 6.4. Глобальные проблемы человечества
- Часть 7. Самоорганизация в живой и неживой природе
- 7.1. Кибернетика и общие проблемы управления
- В сложных динамических системах
- В создании кибернетики принимали участие многие ученые: д. Биглоу, к. Шеннон, и.М. Сеченов, и.П. Павлов, а.М. Ляпунов, а.А. Марков, а.Н. Колмогоров и др.
- Энергия
- 7.2. Синергетика – новое направление междисциплинарных исследований
- 7.3 Характеристики самоорганизующихся систем
- 7.4. Закономерности самоорганизации
- 7.5. Физические модели самоорганизации в экономике
- Персоналии
- Цитатник
- Список использованной и рекомендуемой литературы
- Часть 1. Логика и методология естественных
- Часть 2. Основные физические концепции...104
- Часть 3. Мегамир: современные астрофизи-ческие и космологические концепции……..180