1.15. Критерии научного знания
Теория – высшая форма организации научного знания, дающая целостное представление о существенных связях и отношениях в какой-либо области реальности. Разработка теории практически всегда сопровождается введением понятий, фиксирующих непосредственно ненаблюдаемые стороны объективной реальности. Поэтому не всегда проверка истинности теории может быть осуществлена прямым наблюдением или экспериментом. Возникает вопрос: как установить истинность научного знания? Как отличить науку от псевдонаучных утверждений?
Для установления истинности научного знания методологами науки сформулировано несколько важнейших принципов. Первый из них – принцип верификации: какое-либо понятие или суждение имеет смысл, если оно сводимо к непосредственному опыту, т.е. эмпирически проверяемо. Если этого не удается сделать, то считается, что утверждение представляет собой либо тавтологию, либо лишено смысла [16]. Принцип строгой верификации сводит знание о мире к «чистому опыту» и лишает научности утверждения, непосредственно не проверяемые опытным путем. Так как понятия развитой научной теории, как правило, трудно свести к опытным данным, то для них допускается косвенная верификация. Она утверждает, что если невозможно опытным путем подтвердить какое-то понятие или суждение теории, то можно ограничиться экспериментальным подтверждением выводов или следствий из них. Так, для объяснения свойств сильновзаимодействующих элементарных частиц – адронов – была разработана кварковая модель, в соответствии с которой адроны состоят из гипотетических частиц – кварков. До сих пор в экспериментах кварки обнаружить не удалось. Но кварковая теория предсказала существование новых типов элементарных частиц, которые были обнаружены экспериментально. Тем самым косвенно подтверждено существование кварков и косвенно верифицирована сама теория.
Принцип верификации лишь в первом приближении отделяет научное знание от ненаучного. В качестве альтернативы принципу верификации крупнейшим философом и методологом науки ХХ века К.Поппером в 1934 г. был предложен принцип фальсификации (дискредитации) гипотез. В соответствии с этим принципом на статус научного может претендовать только принципиально опровержимое (фальсифицируемое) знание. Научной является та гипотеза, которая содержит в себе ясную систему собственного опровержения. Фальсификация – научная процедура, устанавливающая ложность гипотезы или теории в результате экспериментальной или теоретической проверки [57]. По мнению К.Поппера, только то знание может претендовать на звание научного, которое в принципе опровержимо:
«Теория, не опровержимая никаким мыслимым событием, является ненаучной. Неопровержимость представляет собой не достоинство теории (как часто думают), а ее порок».
Никакое количество экспериментальных подтверждений теории не является достаточным для доказательства ее истинности. Однако достаточно одного факта, противоречащего теории или гипотезе, чтобы поставить ее истинность под сомнение. Таков важнейший принцип развития науки – через научную гипотезу, которая научна, потому что проверяема и опровергаема. По Попперу, именно попытки фальсифицировать, т.е. опровергнуть теорию, должны быть наиболее эффективны в плане подтверждения ее истинности:
«Каждая настоящая проверка теории является попыткой ее фальсифицировать, то есть опровергнуть. Проверяемость есть фальсифицируемость».
Одним из критериев научности является рациональность знания. В основе рационального стиля мышления лежит признание существования универсальных, доступных разуму причинных связей, а также формального доказательства в качестве средства обоснования знания. Рационализм - философское направление, признающее разум основой познания и поведения людей. Рационализм пытался решить вопрос: как знание, полученное в процессе познавательной деятельности человека, приобретает объективный, всеобщий и необходимый характер. Обосновывая безусловную достоверность научных принципов и положений математики и естествознания, рационализм утверждал, что научное знание, обладающее этими логическими свойствами, достижимо посредством разума, который выступает его источником и вместе с тем критерием истинности [55].
- Федеральное агентство по образованию
- Брянский государственный технический университет
- В.И.Попков
- Концепции современного естествознания
- Введение
- Часть 1. Логика и методология естественных наук
- 1.1.Предмет естествознания
- 1.2. Культура и наука
- 1.3. Научная картина мира
- 1.4. Связь науки с другими компонентами культуры
- 1.5. Виды научного знания
- 1.6. Проблема культур в науке
- 1.7. Материя и движение
- 1.8. Пространство и время
- 1.9. Материальное единство мира
- 1.10. Характерные черты науки
- 1.11. Мышление
- 1.12. Структура научного познания
- 1.13. Методы научного познания
- 1.13.1. Философские методы
- 1.13.2. Общенаучные методы
- 1.13.2.1.Эмпирические методы исследования
- 1.13.2.2. Методы теоретического познания
- 1.13.2.3. Общелогические методы и приемы
- 1.13.2.4. Математика – универсальный язык естествознания
- 1.13.3 .Прочие методы
- 1.14. Гипотеза и теория
- 1.15. Критерии научного знания
- 1.16. Модели развития науки
- 1.17. Дифференциация и интеграция в науке
- 1.18. Принципы организации современного естествознания. Системный метод в современном естествознании
- 1.19. Особенности современной научной картины мира
- Часть 2. Основные физические концепции
- 2.1. Концепция детерминизма в классическом естествознании
- 2.1.1. Триумф небесной механики и детерминизм Лапласа
- 2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике
- 2.1.3. Связь законов сохранения с фундаментальной симметрией пространства и времени.
- 2.2.2. Континуальный подход в механике сплошных сред
- 2.2.3. Концепция близкодействия и материальные физические поля
- 2.2.4. Классические представления о природе света
- 2.2.5. Апофеоз классического естествознания
- 2.3. Развитие представлений о пространстве и времени в естествознании
- 2.3.1. Пространство и время в античной натурфилософии
- 2.3.2. Абсолютное пространство и абсолютное время в классическом естествознании
- 2.3.3. Уравнения Максвелла и концепция абсолютно неподвижного эфира
- 2.3.4. Элементы специальной и общей теории относительности
- 2.3.4.1.Постулаты Эйнштейна
- 2.3.4.2. Преобразования Лоренца
- 2.3.4.3. Следствия из преобразований Лоренца
- 1.Одновременность событий в разных системах отсчета
- 2. Длина тел в разных системах отсчета
- 3. Длительность событий в разных системах отсчета
- 4. Закон сложения скоростей в релятивистской механике
- 2.3.4.4. Интервал
- 2.3.4.5. Основы релятивистской динамики
- 1. Релятивистский импульс
- 2.Зависимость массы от скорости
- 3. Взаимосвязь массы и энергии
- 4. Энергия связи
- 5. Частицы с нулевой массой покоя
- 2.3.4.6. Четырехмерное пространство-время в общей теории относительности
- 2.3.4.7. Релятивизм как концептуальный принцип неклассического естествознания
- 2.4. Статистические закономерности в приРоде
- 2.4.1. «Стрела времени» и проблема необратимости в естествознании
- 2.4.2. Возникновение статистической механики.
- 2.4.3. Особенности описания состояний в статистических теориях.
- 2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
- 2.4.5. Гипотеза Томсона и «тепловая смерть» Вселенной.
- 2.5. Микромир и основные концепции неклассического естествознания
- 2.5.1. Зарождение квантовых представлений в физике
- 2.5.2. Особенности неклассического подхода к описанию динамики микрочастиц
- 2.5.3. Квантовая природа агрегатных состояний макроскопических объектов
- 2.6. На пути к единой фундаментальной теории материи
- 2.6.1. Становление субатомной физики
- 2.6.2. Фундаментальные взаимодействия в природе
- 2.6.3. Стандартная модель элементарных частиц
- 2.6.4. На переднем крае физики микромира
- Часть 3. Мегамир: современные астрофизические и космологические концепции
- 3.1. Звездная форма бытия космической материи
- 3.2. Эволюция звезд
- 3.3. Современные космологические модели вселенной
- 3.4. Происхождение и развитие вселенной
- 3.5. Солнечная система
- 3.5.1. Солнце
- 3.5.2. Планеты солнечной системы
- 3.5.2.1. Земля
- 3.5.2.2. Луна
- 3.5.2.3. Меркурий
- 3.5.2.4.Венера
- 3.5.2.5. Марс
- 3.5.2.6. Юпитер
- Часть 4. Основные химические концепции
- 4.1. Учение о составе
- 4.2.Структура вещества и химические системы
- 4.3. Учение о химических процессах
- 4.4. Эволюционная химия – высший уровень развития химических знаний
- Часть 5. Биологический уровень организации материи
- 5.1. Предмет биологии и ее структура
- 5.2. Основные признаки живого
- 5.3. Структурные уровни живого
- 5.4. Клетка, ее строение и функционирование
- 5.5. Химические основы жизни. Генетика
- 5.6. Принципы биологической эволюции
- 5.7. Концепции возникновения жизни на земле
- 5.8. Исторические этапы развития жизни на земле
- Енисей (1,5 млрд. Лет – 1,2 млрд. Лет) Появляются многоклеточные водоросли.
- Часть 6. Человек как феномен природы
- 6.1. Происхождение человека
- 6. 2. Биологическое и социальное в развитии человека
- 6.3. Превращение биосферы в ноосферу
- 6.4. Глобальные проблемы человечества
- Часть 7. Самоорганизация в живой и неживой природе
- 7.1. Кибернетика и общие проблемы управления
- В сложных динамических системах
- В создании кибернетики принимали участие многие ученые: д. Биглоу, к. Шеннон, и.М. Сеченов, и.П. Павлов, а.М. Ляпунов, а.А. Марков, а.Н. Колмогоров и др.
- Энергия
- 7.2. Синергетика – новое направление междисциплинарных исследований
- 7.3 Характеристики самоорганизующихся систем
- 7.4. Закономерности самоорганизации
- 7.5. Физические модели самоорганизации в экономике
- Персоналии
- Цитатник
- Список использованной и рекомендуемой литературы
- Часть 1. Логика и методология естественных
- Часть 2. Основные физические концепции...104
- Часть 3. Мегамир: современные астрофизи-ческие и космологические концепции……..180