2.6.3. Стандартная модель элементарных частиц
В масштабах микромира фактически теряется разница между частицами вещества и частицами (квантами) поля, поэтому в соответствии с общепринятой в настоящее время стандартной моделью все известные на сегодняшний день элементарные частицы делятся на два больших класса: частицы - источники взаимодействий и частицы - переносчики взаимодействий (рис. 9. 1). Частицы первого класса, в свою очередь, подразделяются на две группы, отличающиеся тем, что частицы первой группы - адроны 2 - участвуют во всех четырех фундаментальных взаимодействиях, включая сильные, а частицы второй группы - лептоны2 - не участвуют в сильных взаимодействиях. К адронам относится очень много различных элементарных частиц, большинство из которых имеет своего «двойника» - античастицу. Как правило, это довольно массивные частицы, с малым временем жизни. Исключение составляют нуклоны, причем считается, что время жизни протона превышает возраст Вселенной. Лептонами являются шесть элементарных частиц: электрон е, мюон и таон , а также связанные с ними три нейтрино е, и . Кроме того, каждая из этих частиц также имеет
своего «двойника» - соответствующую античастицу. Все лептоны настолько похожи друг на друга по некоторым, специфическим в масштабах микромира свойствам, что мюон и таон можно было бы назвать тяжелыми электронами, а нейтрино - электронами, “потерявшими” заряд и массу. В то же время, в отличие от электронов, мюоны и таоны являются радиоактивными, а все нейтрино чрезвычайно слабо взаимодействуют с веществом и поэтому настолько неуловимы, что, например, их поток проходит через Солнце, практически не ослабляясь. Отметим, что нейтрино в последнее время привлекают к себе огромный интерес, особенно в связи с проблемами космологии, так как считается, что в потоках нейтрино сосредоточена значительная часть массы Вселенной.
Что касается адронов, то сравнительно недавно, около 30 лет назад, физики нащупали еще один “этаж” в их строении. Рассматриваемая стандартная модель предполагает, что все адроны являются суперпозицией нескольких кварков и антикварков. Кварки различаются по свойствам, многие из которых не имеют аналогов в макромире. Различные кварки обозначаются буквами латинского алфавита: u («up» ), d («down»), c («charm»), b («beauty»), s («strange»), t («truth»). Кроме того, каждый из перечисленных кварков может существовать в трех состояниях, которые называются “цветом”: «синем», «зеленом» и «красном». В последнее время стало общепринятым говорить еще и об “аромате” кварка - так называют все его параметры, не зависящие от “цвета”. Конечно, все эти термины не имеют ничего общего с обычными значениями соответствующих слов. Этими вполне научными терминами обозначаются физические характеристики, которым как правило невозможно дать макроскопическую «интерпретацию». Предполагается, что кварки имеют дробный электрический заряд (-е/3 и +2е/3, где е = 1,6 10-19 Кл - заряд электрона) и взаимодействуют друг с другом с «силой», увеличивающейся с расстоянием. Поэтому кварки нельзя «разорвать», они не могут существовать отдельно друг от друга3. В определенном смысле кварки являются «настоящими», «истинными» элементарными частицами для адронной формы материи. Теория, описывающая поведение и свойства кварков, называется квантовой хромодинамикой.
Частицы - переносчики взаимодействий включают в себя восемь глюонов (от английского слова glue - клей), ответственных за сильные взаимодействия кварков и антикварков, фотон, осуществляющий электромагнитное взаимодействие, промежуточные бозоны, которыми обмениваются слабо-взаимодействующие частицы, и гравитон, принимающий участие в универсальном гравитационном взаимодействии между всеми частицами.
- Федеральное агентство по образованию
- Брянский государственный технический университет
- В.И.Попков
- Концепции современного естествознания
- Введение
- Часть 1. Логика и методология естественных наук
- 1.1.Предмет естествознания
- 1.2. Культура и наука
- 1.3. Научная картина мира
- 1.4. Связь науки с другими компонентами культуры
- 1.5. Виды научного знания
- 1.6. Проблема культур в науке
- 1.7. Материя и движение
- 1.8. Пространство и время
- 1.9. Материальное единство мира
- 1.10. Характерные черты науки
- 1.11. Мышление
- 1.12. Структура научного познания
- 1.13. Методы научного познания
- 1.13.1. Философские методы
- 1.13.2. Общенаучные методы
- 1.13.2.1.Эмпирические методы исследования
- 1.13.2.2. Методы теоретического познания
- 1.13.2.3. Общелогические методы и приемы
- 1.13.2.4. Математика – универсальный язык естествознания
- 1.13.3 .Прочие методы
- 1.14. Гипотеза и теория
- 1.15. Критерии научного знания
- 1.16. Модели развития науки
- 1.17. Дифференциация и интеграция в науке
- 1.18. Принципы организации современного естествознания. Системный метод в современном естествознании
- 1.19. Особенности современной научной картины мира
- Часть 2. Основные физические концепции
- 2.1. Концепция детерминизма в классическом естествознании
- 2.1.1. Триумф небесной механики и детерминизм Лапласа
- 2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике
- 2.1.3. Связь законов сохранения с фундаментальной симметрией пространства и времени.
- 2.2.2. Континуальный подход в механике сплошных сред
- 2.2.3. Концепция близкодействия и материальные физические поля
- 2.2.4. Классические представления о природе света
- 2.2.5. Апофеоз классического естествознания
- 2.3. Развитие представлений о пространстве и времени в естествознании
- 2.3.1. Пространство и время в античной натурфилософии
- 2.3.2. Абсолютное пространство и абсолютное время в классическом естествознании
- 2.3.3. Уравнения Максвелла и концепция абсолютно неподвижного эфира
- 2.3.4. Элементы специальной и общей теории относительности
- 2.3.4.1.Постулаты Эйнштейна
- 2.3.4.2. Преобразования Лоренца
- 2.3.4.3. Следствия из преобразований Лоренца
- 1.Одновременность событий в разных системах отсчета
- 2. Длина тел в разных системах отсчета
- 3. Длительность событий в разных системах отсчета
- 4. Закон сложения скоростей в релятивистской механике
- 2.3.4.4. Интервал
- 2.3.4.5. Основы релятивистской динамики
- 1. Релятивистский импульс
- 2.Зависимость массы от скорости
- 3. Взаимосвязь массы и энергии
- 4. Энергия связи
- 5. Частицы с нулевой массой покоя
- 2.3.4.6. Четырехмерное пространство-время в общей теории относительности
- 2.3.4.7. Релятивизм как концептуальный принцип неклассического естествознания
- 2.4. Статистические закономерности в приРоде
- 2.4.1. «Стрела времени» и проблема необратимости в естествознании
- 2.4.2. Возникновение статистической механики.
- 2.4.3. Особенности описания состояний в статистических теориях.
- 2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
- 2.4.5. Гипотеза Томсона и «тепловая смерть» Вселенной.
- 2.5. Микромир и основные концепции неклассического естествознания
- 2.5.1. Зарождение квантовых представлений в физике
- 2.5.2. Особенности неклассического подхода к описанию динамики микрочастиц
- 2.5.3. Квантовая природа агрегатных состояний макроскопических объектов
- 2.6. На пути к единой фундаментальной теории материи
- 2.6.1. Становление субатомной физики
- 2.6.2. Фундаментальные взаимодействия в природе
- 2.6.3. Стандартная модель элементарных частиц
- 2.6.4. На переднем крае физики микромира
- Часть 3. Мегамир: современные астрофизические и космологические концепции
- 3.1. Звездная форма бытия космической материи
- 3.2. Эволюция звезд
- 3.3. Современные космологические модели вселенной
- 3.4. Происхождение и развитие вселенной
- 3.5. Солнечная система
- 3.5.1. Солнце
- 3.5.2. Планеты солнечной системы
- 3.5.2.1. Земля
- 3.5.2.2. Луна
- 3.5.2.3. Меркурий
- 3.5.2.4.Венера
- 3.5.2.5. Марс
- 3.5.2.6. Юпитер
- Часть 4. Основные химические концепции
- 4.1. Учение о составе
- 4.2.Структура вещества и химические системы
- 4.3. Учение о химических процессах
- 4.4. Эволюционная химия – высший уровень развития химических знаний
- Часть 5. Биологический уровень организации материи
- 5.1. Предмет биологии и ее структура
- 5.2. Основные признаки живого
- 5.3. Структурные уровни живого
- 5.4. Клетка, ее строение и функционирование
- 5.5. Химические основы жизни. Генетика
- 5.6. Принципы биологической эволюции
- 5.7. Концепции возникновения жизни на земле
- 5.8. Исторические этапы развития жизни на земле
- Енисей (1,5 млрд. Лет – 1,2 млрд. Лет) Появляются многоклеточные водоросли.
- Часть 6. Человек как феномен природы
- 6.1. Происхождение человека
- 6. 2. Биологическое и социальное в развитии человека
- 6.3. Превращение биосферы в ноосферу
- 6.4. Глобальные проблемы человечества
- Часть 7. Самоорганизация в живой и неживой природе
- 7.1. Кибернетика и общие проблемы управления
- В сложных динамических системах
- В создании кибернетики принимали участие многие ученые: д. Биглоу, к. Шеннон, и.М. Сеченов, и.П. Павлов, а.М. Ляпунов, а.А. Марков, а.Н. Колмогоров и др.
- Энергия
- 7.2. Синергетика – новое направление междисциплинарных исследований
- 7.3 Характеристики самоорганизующихся систем
- 7.4. Закономерности самоорганизации
- 7.5. Физические модели самоорганизации в экономике
- Персоналии
- Цитатник
- Список использованной и рекомендуемой литературы
- Часть 1. Логика и методология естественных
- Часть 2. Основные физические концепции...104
- Часть 3. Мегамир: современные астрофизи-ческие и космологические концепции……..180