4.4. Эволюционная химия – высший уровень развития химических знаний
Четвертый концептуальный уровень системы химических знаний связан с развитием эволюционной химии.
Эволюционная химия вошла в науку и практику сравнительно недавно – в 60-е годы. Биологи к тому времени широко использовали эволюционную теорию Дарвина. Химики же не проявляли активного интереса к происхождению видов, составляющему основу эволюционной теории. Считалось, что получение любого нового химического вещества всегда было делом рук и разума человека: молекулы нового химического соединения конструировались по законам структурной химии из атомов и атомных групп, как здание строится из кирпичей и блоков. Живые же организмы подобным образом собрать нельзя. Но постепенно назревали эволюционные проблемы и для химических объектов.
Природа в процессе эволюции живых организмов создала своеобразные химические технологии необычайной эффективности. При изучении химизма живой природы биохимией и молекулярной биологией было установлено, что состав и структура биополимерных молекул представляют собой единый набор для всех живых веществ, вполне доступный для исследования физическими и химическими методами. С другой стороны было установлено, что в живых системах осуществляются такие типы химических превращений, какие никогда не обнаруживались в неживом мире.
Интенсивные исследования последнего времени направлены на выяснение механизмов химических превращений, присущих живой материи. Химиков-органиков интересуют проблемы синтеза сложных веществ, аналогов органических соединений, образующихся в живых организмах; биологов – вещественная и функциональная основы жизнедеятельности; исследователи-медики пытаются выяснить биохимические границы между нормой и патологией в организме.
Под эволюционными проблемами в химии понимают процессы самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся более сложными и высокоорганизованными продуктами по сравнению с исходными веществами. В этой связи эволюционную химию считают предтечей биологии – наукой о самоорганизации и саморазвитии химических систем.
Первым ученым, осознавшим высокую упорядоченность и эффективность химических процессов в живых организмах, был основатель органической химии шведский ученый Якоб Берцелиус. Он установил, что основой лаборатории живого организма является биокатализ. Роль катализаторов в живых организмах выполняют ферменты. Идеалом совершенства каталитических превращений считали лабораторию живого организма немецкий ученый Ю. Либих, француз М. Бертло и другие.
Изучив принципы, заложенные эволюцией в химизм живой природы, можно использовать их для развития химической науки и технологии. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия. Ферменты – это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеется сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, т.е. в пределах от 5 до 400С. (Чтобы эти реакции протекали вне организма, потребовалась бы их активизация за счет высокой температуры или иных факторов активизации). Следовательно, ферменты можно определить как биологические катализаторы. Биокатализаторы обладают высокой селективностью (избирательностью) – один фермент катализирует обычно только одну реакцию. По принципу биокатализаторов будут созданы искусственные катализаторы.
Биокатализ нельзя отделить от проблемы биогенеза (происхождения жизни), какой бы трудной она ни являлась. Задача изучения и освоения всего многообразия каталитических процессов в живой природе – это пролог эволюционной химии. Уже обозначены основные подходы к освоению каталитического опыта живой природы.
Тот факт, что катализ играл решающую роль в процессе перехода от химических систем к биологическим, т.е. на предбиотической стадии эволюции, в настоящее время подтверждается многими фактами и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши соотечественники Б.П. Белоусов и А.М. Жаботинский. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в указанных химических реакциях важное значение приобретают каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем.
Сегодня химики пришли к выводу, что используя принципы химии живых организмов, можно будет построить принципиально новую химию, основанную на новом управлении химическими процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей солнечной энергии с большим КПД в другие виды энергии: химическую, электрическую, тепловую, а так же химическую энергию в свет большой интенсивности. Возможно, сочетание биохимической энергетики с синтезом полимерных материалов приведет к созданию такой макромолекулы, которая подобно нашим мышцам будет способна превращать химическую энергию в механическую.
Интенсивные исследования последнего времени направлены на выяснения как материального состава растительных и живых тканей, так и химических процессов, протекающих в организмах. Такие исследования проводят химики-органики, биохимики, медики. Объединяет все эти исследования идея о ведущей роли ферментов или биорегуляторов в процессе жизнедеятельности. Эта идея впервые изложена французским естествоиспытателем Луи Пастером.
Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производстве химики наметили ряд перспективных направлений.
Первое – развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а так же способами классического гетерогенного катализа.
Второе направление заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов, характеризующихся высокой активностью и селективностью, иногда почти такой же, как у оригиналов. Пока все же полученные модели не в состоянии заменить биокатализаторы живых систем. На данном этапе развития химических знаний проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время, поскольку является выделенным из целого, из клетки. Цельная клетка со всеми ее ферментным аппаратом – более важный объект, чем одна выделенная из нее деталь.
Проблемы моделирования биокатализаторов показали необходимость детального изучения химической эволюции, то есть установление закономерностей самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся к тому же более высокоорганизованными продуктами по сравнению с исходными веществами. В 1960-х гг. было обнаружено явление самосовершенствования катализаторов в ходе реакции, тогда как обычно катализаторы в процессе их работы дезактивировались, ухудшались и выбрасывались . Речь идет о проявлении самоорганизации в химическом процессе. Здесь понятие «самоорганизация» означает такое изменяющееся состояние химической системы, которому присуще все более высокие уровни сложности и упорядоченности. Проблема биологической самоорганизации (и биологической эволюции) оказывается самым непосредственным образом связана с проблемой химической самоорганизации (химической эволюции). Одна из задач химии, а именно самого новейшего ее направления – эволюционной химии, понять, как из неорганической материи возникает жизнь. Поэтому эволюционную химию можно назвать «предбиологией».
Третье направлении – связывается с достижениями химии иммобилизованных систем. Биохимические катализаторы-ферменты очень неустойчивы при хранении и быстро портятся. Поэтому велись работы по созданию стабилизированных ферментов, в результате научились получать так называемые иммобилизованные ферменты. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие. Благодаря исследованием русского химика И.В. Березина решены проблемы использования иммобилизованных ферментов в тонком органическом синтезе, трансформации стероидов, модификации малостабильных соединений. Намечаются пути применения иммобилизованных оксидаз, выделенных микроорганизмами, для тяжелого органического синтеза, в частности, для получения на основе парафинов и ароматических углеводородов спиртов, альдегидов, кетонов, кислот. Изучаются возможности ферментативного обеззараживания сточных вод.
Четвертое направление характеризуется постановкой самой широкой задачи – изучением и освоением всего каталитического опыта живой природы, в том числе и формирование фермента, клетки и даже организма. Это – движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем.
Возникновению эволюционной химии способствовали исследования в области моделирования биокатализаторов. Другим поводом для развития исследований в области эволюционной химии явились успехи «нестационарной кинетики» или динамики химических систем. Они были получены совершенно неожиданно в условиях нарушенного стационарного режима работы гетерогенных катализаторов. В 1960-х годах были открыты случаи самосовершенствования катализаторов в ходе реакции, тогда как обычно они в процессе работы дезактивировались, ухудшались и выбрасывались.
В эволюционной химии существенное место занимает понятие «самоорганизация». Понятие «самоорганизация» означает упорядоченность существования материальных динамических, т.е. качественно изменяющихся систем. Самоорганизация отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности и системной упорядоченности или материальной организации.
Существуют два подхода к решению проблемы самоорганизации предбиологических систем: субстратный и функциональный.
Результатом субстратного подхода к проблеме биогенеза является накопленная информация об отборе химических элементов и структур, т.е. проблема состава элементов – органогенов и соответствующей структуры биологических систем. Отбор химических элементов проходил в процессе самоорганизации предбиологических систем.
В настоящее время известно более 110 химических элементов. Большинство из них, попадая в живые организмы так или иначе участвуют в их жизнедеятельности. Но основу живых систем составляют только шесть элементов, получивших название органогенов: углерод, водород, кислород, азот, фосфор и сера, общая весовая доля которых в живых организмах составляет 97,4 %. За ними следуют 12 элементов, входящих в состав многих физиологически важных компонентов биосистем. К ним относятся Na, К, Са, Мg, Fe, Al, Si, Cl, Cu, Zn, Co, Ni, весовая доля которых в организмах примерно 1,6 %. Еще около двадцати элементов участвуют в построении и функционировании отдельных узкоспецифических биосистем, например, водорослей, состав которых определяется в известной мере питательной средой. Их доля в организмах составляет около 1%. Участие всех остальных элементов в построении биосистем практически не зафиксировано.
В настоящее время насчитывается около 8 млн. химических соединений. Из них 96 % органические, состоящие из тех же 6 – 18 элементов. Из остальных 90 элементов природа ( в условиях Земли) создала всего около 300 тыс. неорганических соединений. Из органогенов на Земле наиболее распространены лишь кислород и водород. Распространенность С, N, P и S в поверхностных слоях Земли примерно одинакова и в общем невелика – около 0,24 весовых процента. В космосе безраздельно господствуют только два элемента – Н и Не. Таким образом, геохимические условия не играют существенной роли в отборе химических элементов при формировании органических и биологических систем. Определяющими факторами здесь выступают требования соответствия между строительным материалом и теми сооружениями, которые представляют собой высокоорганизованные структуры.
С химической точки зрения эти требования сводятся к отбору элементов, способных к образованию прочных энергоемких химических связей, причем связей лабильных, т.е. легко подвергающихся гомолизу, гетеролизу или циклическому перераспределению. Указанным условиям отвечает углерод как органоген №1. Он, как ни какой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реализовать их единство, выступать в качестве носителя внутреннего противоречия. Атомы углерода в одном и том же соединении способны выполнять роль и акцептора, и донора электронов. Они образуют почти все типы связей, которые знает химия. Азот, фосфор, сера как органогены, а так же элементы, составляющие активные центры ферментов – Fe и Mg тоже отличаются лабильностью. Кислород и водород не столь лабильны и их рассматривают как носителей окислительных и восстановительных процессов.
Подобно тому, как из всех химических элементов только 6 органогенов и 10 – 16 других элементов отобраны природой для основы биосистем, в результате эволюции шел отбор и химических соединений. Из миллионов органических соединений в построении живого участвуют только несколько сотен; из 100 известных аминокислот в состав белков входят только 20; лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. Исследователи – химики и биологи – поражаются трудно обозримому миру животных и растений, составленному природой из такого узкого круга органических веществ.
Полагают, что когда период химической подготовки – период интенсивных и разнообразных превращений – сменился периодом биологический эволюции, химическая эволюция словно застыла. Теперь находят массу доказательств того, что аминокислотный состав гемоглобина самых низших позвоночных животных и человека практически один и тот же; более или менее одинаковыми остаются у разных видов растений состав ферментативных средств и состав веществ, накапливаемых впрок и т.д.
Каким же образом проводилась так называемая химическая подготовка, в результате которой из минимума химических элементов и химических соединений образовался сложнейший высокоорганизованный комплекс- биосистема ? Химикам важно понять это, чтобы научиться у природы приспосабливать к своим нуждам « менее организованные материалы», например, синтезировать сахар из СО2, СОН2 и Н2О, получать стереоспецифические соединения и т.п.
В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Примером может служить система пирольных циклов в гемине, обеспечивающая повышение активности атома железа в окислительно-восстановительных реакциях в миллиарды раз.
Первой и наиболее простой из этих структур можно назвать различные фазовые границы. Они служили основой физической и химической адсорбции, которая вносила элементарное упорядочение во взаимное расположение частиц, увеличивала их концентрацию и служила фактором появления каталитического эффекта. Вторым структурным фрагментом считают группировки, обеспечивающие процессы переноса электронов и протонов. Сюда относят полупроводниковые цепи и структуры, ответственные за трансгидрировние, или перенос водорода. Третья структура, необходимая для эволюционизирующих систем, – это группировки, выполняющие задачу энергетического обеспечения. К ним относятся оксиооксогруппы, фосфоросодержащие и другие фрагменты с макроэнергетическими связями.
Следующий фрагмент эволюционизирующих систем- развитая полимерная структура типа РНК и ДНК. Она выполняет ряд функций, свойственных перечисленным выше структурам, и главное – роль каталитической матрицы, на которой осуществляется воспроизведение себе подобных структур.
Отличительной чертой второго – функционального подхода к проблеме предбиологической эволюции является сосредоточение внимания на исследовании самоорганизации материальных систем, на выявлении законов, которым подчиняются такие процессы. Среди естествоиспытателей данного подхода придерживаются преимущественно физики и математики, которые рассматривают эволюционные процессы с позиции кибернетики. Крайней точкой зрения в этом подходе является утверждение о полном безразличии к материалу эволюционных систем: живые системы, вплоть до интеллекта, могут быть смоделированы даже из металлических систем.
В 1969 г. появилась общая теория химической эволюции и биогенеза, которая в общем виде была выдвинута в 1964 г. профессором МГУ Руденко А.П. В ней осуществлен синтез рациональных сторон субстратного и функционального подходов. Она решает в комплексе вопросы о движущих силах и механизме эволюционного процесса, т.е. о законах химической эволюции, отборе элементов и структур и их причинной обусловленности, высоте химической организации и иерархии химических систем как следствии
эволюции.
Сущность общей теории состоит в утверждении, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционизирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор каталитических центров, которые обладают наибольшей активностью. Те же центры, изменение которых связано с уменьшением активности, постепенно выключаются из кинетического процесса, « не выживают». При многократных последовательных необратимых изменениях катализатора переход его на все более высокие уровни сопровождается эволюцией базисной реакции как за счет изменения состава и структуры катализаторов, функционировавших в начале реакции, так и за счет дробления химического процесса на элементарные стадии и появления на них новых катализаторов. Эти новые катализаторы появляются не путем захвата их из внешней среды, а благодаря саморазвитию.
Согласно основному закону химической эволюции, с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.
Саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет постоянного потока трансформируемой энергии.
А так как главным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на основе реакций с самым большим сродством (экзотермические реакции).
Базисная реакция является, таким образом, не только источником энергии, необходимой для полезной работы в системе, которая направлена против равновесия, но и орудием отбора наиболее совершенных эволюционных изменений в катализаторе.
В настоящее время развивается новейшее направление, расширяющее представление об эволюции химических систем – нестационарная кинетика, которая занимается теорией управления нестационарными процессами.
Развитие химических знаний уже на сегодняшнем этапе позволяет надеяться на разрешение многих проблем, стоящих перед человечеством. Это прежде всего ускорение химических превращений за счет объединения в катализаторах будущего следующих достоинств: гетерогенного, гомогенного и металлоэнзимного катализа; осуществление новых важных энергетически затрудненных процессов путем сопряжения эндо – и экзотермических реакций; существенная экономия углеводородного сырья и переход от нефти к углю как более распространенному сырьевому источнику.
Химия имеет реальные предпосылки для моделирования и интенсификации фотосинтеза: фотолиз воды с получением водорода как самого высокого, эффективного и экологически чистого топлива; промышленный синтез на основе углекислого газа широкого спектра органических продуктов, и в первую очередь метанола, этанола, формальдегида и муравьиной кислоты; промышленный синтез многочисленных фтор-материалов. Сегодня созрели условия для создания на основе химии малоотходных, безотходных и энергосберегающих промышленных производств.
- Федеральное агентство по образованию
- Брянский государственный технический университет
- В.И.Попков
- Концепции современного естествознания
- Введение
- Часть 1. Логика и методология естественных наук
- 1.1.Предмет естествознания
- 1.2. Культура и наука
- 1.3. Научная картина мира
- 1.4. Связь науки с другими компонентами культуры
- 1.5. Виды научного знания
- 1.6. Проблема культур в науке
- 1.7. Материя и движение
- 1.8. Пространство и время
- 1.9. Материальное единство мира
- 1.10. Характерные черты науки
- 1.11. Мышление
- 1.12. Структура научного познания
- 1.13. Методы научного познания
- 1.13.1. Философские методы
- 1.13.2. Общенаучные методы
- 1.13.2.1.Эмпирические методы исследования
- 1.13.2.2. Методы теоретического познания
- 1.13.2.3. Общелогические методы и приемы
- 1.13.2.4. Математика – универсальный язык естествознания
- 1.13.3 .Прочие методы
- 1.14. Гипотеза и теория
- 1.15. Критерии научного знания
- 1.16. Модели развития науки
- 1.17. Дифференциация и интеграция в науке
- 1.18. Принципы организации современного естествознания. Системный метод в современном естествознании
- 1.19. Особенности современной научной картины мира
- Часть 2. Основные физические концепции
- 2.1. Концепция детерминизма в классическом естествознании
- 2.1.1. Триумф небесной механики и детерминизм Лапласа
- 2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике
- 2.1.3. Связь законов сохранения с фундаментальной симметрией пространства и времени.
- 2.2.2. Континуальный подход в механике сплошных сред
- 2.2.3. Концепция близкодействия и материальные физические поля
- 2.2.4. Классические представления о природе света
- 2.2.5. Апофеоз классического естествознания
- 2.3. Развитие представлений о пространстве и времени в естествознании
- 2.3.1. Пространство и время в античной натурфилософии
- 2.3.2. Абсолютное пространство и абсолютное время в классическом естествознании
- 2.3.3. Уравнения Максвелла и концепция абсолютно неподвижного эфира
- 2.3.4. Элементы специальной и общей теории относительности
- 2.3.4.1.Постулаты Эйнштейна
- 2.3.4.2. Преобразования Лоренца
- 2.3.4.3. Следствия из преобразований Лоренца
- 1.Одновременность событий в разных системах отсчета
- 2. Длина тел в разных системах отсчета
- 3. Длительность событий в разных системах отсчета
- 4. Закон сложения скоростей в релятивистской механике
- 2.3.4.4. Интервал
- 2.3.4.5. Основы релятивистской динамики
- 1. Релятивистский импульс
- 2.Зависимость массы от скорости
- 3. Взаимосвязь массы и энергии
- 4. Энергия связи
- 5. Частицы с нулевой массой покоя
- 2.3.4.6. Четырехмерное пространство-время в общей теории относительности
- 2.3.4.7. Релятивизм как концептуальный принцип неклассического естествознания
- 2.4. Статистические закономерности в приРоде
- 2.4.1. «Стрела времени» и проблема необратимости в естествознании
- 2.4.2. Возникновение статистической механики.
- 2.4.3. Особенности описания состояний в статистических теориях.
- 2.4. 4. Увеличение энтропии при переходе из упорядоченного в неупорядоченное состояние
- 2.4.5. Гипотеза Томсона и «тепловая смерть» Вселенной.
- 2.5. Микромир и основные концепции неклассического естествознания
- 2.5.1. Зарождение квантовых представлений в физике
- 2.5.2. Особенности неклассического подхода к описанию динамики микрочастиц
- 2.5.3. Квантовая природа агрегатных состояний макроскопических объектов
- 2.6. На пути к единой фундаментальной теории материи
- 2.6.1. Становление субатомной физики
- 2.6.2. Фундаментальные взаимодействия в природе
- 2.6.3. Стандартная модель элементарных частиц
- 2.6.4. На переднем крае физики микромира
- Часть 3. Мегамир: современные астрофизические и космологические концепции
- 3.1. Звездная форма бытия космической материи
- 3.2. Эволюция звезд
- 3.3. Современные космологические модели вселенной
- 3.4. Происхождение и развитие вселенной
- 3.5. Солнечная система
- 3.5.1. Солнце
- 3.5.2. Планеты солнечной системы
- 3.5.2.1. Земля
- 3.5.2.2. Луна
- 3.5.2.3. Меркурий
- 3.5.2.4.Венера
- 3.5.2.5. Марс
- 3.5.2.6. Юпитер
- Часть 4. Основные химические концепции
- 4.1. Учение о составе
- 4.2.Структура вещества и химические системы
- 4.3. Учение о химических процессах
- 4.4. Эволюционная химия – высший уровень развития химических знаний
- Часть 5. Биологический уровень организации материи
- 5.1. Предмет биологии и ее структура
- 5.2. Основные признаки живого
- 5.3. Структурные уровни живого
- 5.4. Клетка, ее строение и функционирование
- 5.5. Химические основы жизни. Генетика
- 5.6. Принципы биологической эволюции
- 5.7. Концепции возникновения жизни на земле
- 5.8. Исторические этапы развития жизни на земле
- Енисей (1,5 млрд. Лет – 1,2 млрд. Лет) Появляются многоклеточные водоросли.
- Часть 6. Человек как феномен природы
- 6.1. Происхождение человека
- 6. 2. Биологическое и социальное в развитии человека
- 6.3. Превращение биосферы в ноосферу
- 6.4. Глобальные проблемы человечества
- Часть 7. Самоорганизация в живой и неживой природе
- 7.1. Кибернетика и общие проблемы управления
- В сложных динамических системах
- В создании кибернетики принимали участие многие ученые: д. Биглоу, к. Шеннон, и.М. Сеченов, и.П. Павлов, а.М. Ляпунов, а.А. Марков, а.Н. Колмогоров и др.
- Энергия
- 7.2. Синергетика – новое направление междисциплинарных исследований
- 7.3 Характеристики самоорганизующихся систем
- 7.4. Закономерности самоорганизации
- 7.5. Физические модели самоорганизации в экономике
- Персоналии
- Цитатник
- Список использованной и рекомендуемой литературы
- Часть 1. Логика и методология естественных
- Часть 2. Основные физические концепции...104
- Часть 3. Мегамир: современные астрофизи-ческие и космологические концепции……..180