logo
ПОПКОВ В

2.1.2. Идеализированные представления о пространстве, времени и состоянии в классической механике

Чтобы разобраться в истоках детерминизма ньютоновской механики, понять причину ее эффективности и выяснить возможные ограничения области ее применения, проанализируем исходные положения этой теории и используемые в ней методы анализа. Прежде всего, следует отметить, что законы механики формулируются не для реальных, а для идеальных объектов и ситуаций, которые разворачиваются в “абсолютно” пустом пространстве и в “абсолютно” независимом от этого пространства времени. Однако, самой важной идеализацией в механике является материальная точка - объект, не имеющий геометрических размеров, но, тем не менее, обладающей инертностью (массой). Положение в пространстве таких (и только таких!) объектов можно описать радиус-вектором r, конец которого описывает непрерывную линию, называемую траекторией (рис. 2.1.1).

Именно для анализа траекторий движения материальных точек Ньютоном и независимо от него Г. Лейбницем был разработан специальный математический аппарат - дифференциальное и интегральное исчисление, краеугольным понятием которого является производная, представляющая собой скорость изменения функции. Так, производная радиус-вектора r называется в механике вектором скорости v = r. Этот вектор направлен по касательной к траектории и характеризует изменение радиус-вектора как по длине (модулю), так и по направлению. Аналогично, ускорение a = v = r описывает изменение вектора скорости по модулю и по направлению [49].

Фундаментом классической механики является утверждение о том, что в инерциальных системах отсчета* ускорение а материальной точки с массой m определяется силой F, характеризующей ее взаимодействия с другими материальными объектами

ma = F (2.1.1)

В уравнении (2.1.1) заключена вся классическая механика. С помощью этого уравнения решается основная динамическая задача - определение траектории r(t) по заданным силам F. Фактически речь идет о математической задаче, так как уравнение (2.1.1) является обыкновенным дифференциальным уравнением 2-го порядка. Чтобы продемонстрировать важную для дальнейшего особенность решения таких уравнений, рассмотрим простейший частный случай, когда F = const (движение в однородном силовом поле). Обозначим g = F /m, тогда после первого интегрирования уравнения (2.1.1) получаем

v(t) = gt + C1,

где C1 - произвольный постоянный вектор. Еще одно интегрирование уже полученной скорости v(t) приводит к формуле для радиус-вектора

r(t) = gt2 / 2 + C1t + C2,

где С2 - другой произвольный вектор. Мы видим, что с помощью только уравнения (2.1.1) можно получить целое «семейство» траекторий, соответствующих различным векторам С1 и С2. Таким образом, чтобы определить, по какой конкретно траектории будет двигаться материальная точка, одного уравнения (2.1.1) недостаточно.

Легко видеть, что векторы С1 и С2 на самом деле являются скоростью и радиус-вектором материальной точки в начальный момент времени t = 0: С2 = r(0), С1 = v(0). Значит, для определения траектории r(t) необходимо знать не только уравнение (2.1.1), но также начальное положение и начальную скорость материальной точки:

r(t) = gt2 / 2 + v(0)t + r(0) (2.1.2)

Очевидно, начальный момент времени может быть выбран произвольно. Поэтому мгновенное положение и мгновенная скорость полностью и однозначно определяет траекторию движения материальной точки. Именно поэтому говорят, что состояние материальной точки полностью определяется ее положением и скоростью:

положение + скорость = состояние

Таким образом, оказывается, что детерминизм ньютоновской механики обусловлен возможностью применения математического аппарата теории дифференциальных уравнений. В свою очередь, эта возможность появляется благодаря использованию очень «сильных» идеализаций - материальная точка, инерциальная система отсчета и т.п. Очевидно, что эти идеализации, не являющиеся объективной реальностью, вносят элемент субъективизма в самые основы теории. «Расплатой» за этот субъективизм является ограниченность ньютоновской механики, которая проявляется, например, в невозможности описания необратимых процессов. Дело в том, что уравнение траектории (2.1.2) определяет не только «будущее» положение материальной точки (t > 0), но и «прошлые» ее положения при t < 0 (вспомним, что момент

Z

z

Скорость v

Ускорение а

Радиус-вектор r

Y

y

x

X

Рис. 2.1.1. Кинематические характеристики движения

материальной точки

L = r x p

p

Рис. 2.1.2. Момент импульса материальной точки

времени t = 0 был выбран нами совершенно произвольно). Если мы изменим направление начальной скорости v(0) на противоположное - v(0), то материальная точка будет двигаться «назад» по той же траектории, по которой она до этого момента двигалась «вперед» (обращение времени t  - t и обращение скорости v(0)  - v(0) приводят к одинаковому вкладу в формулу (2.2)).Таким образом, чтобы двигаться «назад» по той же самой траектории материальная точка в какой-то момент должна изменить свою скорость на противоположную, что не запрещено никакими физическими законами. То же самое можно сказать и о множестве материальных точек: ничто не мешает всем этим точкам двигаться в противоположных направлениях по тем же траекториям, по которым они двигались ранее. А это значит, что «прошлое» и «будущее» в поведении материальных точек совершенно симметричны и не имеют друг перед другом никаких «преимуществ». Почему же тогда в реальной жизни, которая, в соответствии с концепцией детерминизма, должна сводиться к поведению очень большого числа материальных точек, прошлое так заметно отличается от будущего? Почему «реальное» время течет «в одну сторону», а процессы в природе (например, человеческая жизнь) никогда не меняют своего направления на противоположное? В чем природа «стрелы времени»? Ответить на все эти вопросы ньютоновская механика не могла, и это, в конце концов, было воспринято как ее кризис.

С серьезными проблемами столкнулись ученые и при попытке применить математический аппарат ньютоновской механики к описанию очень быстрых движений. И в этом случае источником «неприятностей» стала математическая идеализация задачи о движении, в соответствии с которой взаимодействие между отдельными материальными точками определяется мгновенным расстоянием между ними, причем неявно предполагается «бесконечно» большая скорость передачи информации об изменении взаимного расположения этих точек. Решение этих проблем оказалось возможным в рамках специальной и общей теории относительности, где вместо классических представлений об «абсолютном» пространстве и «абсолютном» времени используются релятивистские концепции единого 4-х мерного неевклидова пространства-времени.

Наконец, применение ньютоновской механики оказалось совершенно невозможным для описания движения в масштабах микромира (молекулы, атомы, элементарные частицы). Отказ от основных классических идеализаций (материальная точка, траектория, сила и др.) потребовал полной смены не только математического аппарата, но и самой формулировки задачи о движении, которая из динамической «превратилась» в статистическую.