logo search
ПОПКОВ В

2.4.3. Особенности описания состояний в статистических теориях.

Согласно общепринятой терминологии под динамическими закономерностями (или теориями) понимаются закономерности, в которых связи всех физических величин однозначны. В статистических закономерностях (или теориях) однозначно связаны только вероятности определенных значений тех или иных физических величин, а связи между самими величинами неоднозначны. Общность этих теорий проявляется прежде всего в том, что все они вводят в качестве основного понятие состояния физической системы. Различие же между ними - в определении этого состояния. Например, в классической механике, являющейся динамической теорией, состояние задается координатами и импульсами материальных точек. В другой динамической теории - классической (феноменологической, эмпирической) термодинамике - состояние системы определяется давлением, объемом и температурой некоторой массы вещества. Эволюция этих состояний описывается соответствующими уравнениями - уравнением движения (в форме второго закона Ньютона) в механике и уравнениями переноса в термодинамике неравновесных процессов.

В статистической механике состояние системы определяется совершенно иначе: не положениями и импульсами частиц, а вероятностями того, что та или иная частица имеет координаты и импульсы в определенном диапазоне возможных значений. Для вычисления вероятности используется функция распределения r(x). Смысл этой функции: ее значение в той или иной точке x определяет вероятность dP того, что измеренное значение случайной величины x попадет в малый интервал x, x + x

dP = (x) dx (2.4.1)

Таким образом, если в классической механике состояние N материальных точек (являющихся, например, теоретической моделью идеального газа) задается значениями N радиус-векторов ri и N импульсов pi, то в статистической механике состояние тех же N материальных точек определяется функцией распределения  (r1, p1; r2, p2; ... rN, pN; t), с помощью которой можно вычислить вероятность того, что координаты и импульсы этих N точек находится между r1 и r1+dr1, p1 и p1+dp1, ..., rN и rN+drN, pN и pN +dpN.

Эволюция состояния в фундаментальных статистических теориях определяется уравнениями движения, так же как и в динамических теориях. По заданному статистическому распределению в начальный момент времени однозначно определяется распределение в любой последующий момент времени. Никакого отличия в этом отношении от динамических теорий нет. В частности, в классической статистической механике эволюция функции распределения  (r1, p1; r2, p2; ...; rN, pN; t) со временем описывается с помощью уравнения Лиувилля, точное решение которого - практически недостижимая задача, так как число входящих в него переменных огромно. Поэтому используются приближенные статистические описания с помощью более простых функций распределения. Например, если система состоит из N одинаковых слабо взаимодействующих частиц, то состояние такой системы можно описать с помощью так называемой одночастичной функции распределения  (r, p, t), с помощью которой можно определить среднее число частиц с определенными значениями координат и импульсов. Эта одночастичная функция распределения подчиняется гораздо более простому, чем уравнение Лиувилля, уравнению Больцмана. Главной особенностью статистических уравнений движения (Лиувилля, Больцмана и др.) является то, что их решения соответствуют необратимой трансформации функции распределения  к некоторому равновесному значению. Это означает, что какой бы ни была начальная функция распределения частиц (например, она может соответствовать ситуации, когда все частицы сосредоточены в каком-то определенном месте объема), в конце концов эта функция распределения, постепенно изменяясь, станет равновесной (в частности, будет соответствовать равномерному распределению частиц по объему). Таким образом, статистическая механика позволяет адекватно описать необратимое поведение системы, состоящей из большого числа частиц.