3.2.7 Загальна теорія відносності
Якби ми спробували в такий спосіб побудувати опис природи, то, створюючи свою механіку у кабіні, яка перебуває в стані вільного падіння, ми прийшли б до висновку, що простір має дивні властивості. Припустимо, наприклад, що наша кабіна з великою швидкістю прилітає з далеких відстаней (із глибини Всесвіту) і швидкість її настільки велика, що притягання Землі недостатньо, щоб змусити кабіну зіштовхнутися із Землею, і вона лише відхиляється на незначний кут.
На малюнку лінія В відповідає шляху нашої кабіни. Припустимо також, що поблизу, паралельно нам і з такою ж швидкістю рухається друга кабіна С з іншим спостерігачем. Доти, доки ми не наблизимося до Землі, С буде знаходитися від нас на постійній відстані, але, проходячи ближче до Землі, вона, як це показано на малюнку, відхилиться сильніше й далі буде рухатися в іншому напрямку, віддаляючись від нас. Як спостерігач, що знаходиться в кабіні С, так і ми перебуваємо у вільному русі й тому не помічаємо відчуття прискорення. Відповідно до теорії відносності, ми перебуваємо у стані спокою. Але незабаром ми виявимо, що відстань між нами починає раптово збільшуватися, хоч ніхто, з нас не починав рухатися.
Іншими словами, усунувшись від вирішення питання про спокій або рух і вибираючи за орієнтири будь-які предмети, що можуть рухатися вільно, ми можемо виявити існування гравітаційного поля, а звідси — наявність масивних тіл де-небудь по сусідству, що випливає з поведінки відстаней між нашими орієнтирами. На цьому базується опис гравітаційного поля в термінах властивостей простору й часу. Щоб мати більш докладний опис, потрібно було б занадто багато математики, але ми згадаємо про два висновки, що випливають із вищесказаного.
Один полягає в тому, що світло в гравітаційному полі не поширюється прямолінійно, а зазнає відхилення. Справді, це можна вивести вже з того доведеного в спеціальній теорії відносності факту, що маса та енергія еквівалентні. Промінь світла несе енергію і, отже, масу, а оскільки будь-яка маса притягається важким тілом, подібним, наприклад, до Сонця, то це справджуватиметься і щодо світлового променя. Величина відхилення, однак, не випливає однозначно із цього простого аргументна, тому що сила притягання об'єкта, що рухається, залежить від його швидкості. Це несуттєво для малих швидкостей, з якими, звичайно, ми маємо справу на практиці, але приводить до деякої відмінності, коли швидкість дорівнює швидкості світла. Проходячи поблизу Сонця, світло повинно відхилитися на величину, яку можна обчислити, і тому зірка, яку ми бачимо поблизу краю Сонця, насправді буде здаватися трохи зміщеною від свого нормального положення* Звичайно, як правило, неможливо побачити зірку, коли вона знаходиться поблизу від Сонця, але така можливість з'являється під час повного сонячного затемнення, коли диск Сонця закриває Місяць і зірки стають видимими. Навіть у цьому випадку необхідні дуже точні спостереження зміщення, оскільки очікувана величина становить менше двох дугових секунд, що відповідає куту, під яким видно копійку, якщо спостерігати її з відстані три кілометри. Проте точні астрономічні спостереження дозволяють визначити подібне зміщення, і хоч астрономи все ще використовують кожне зручне сонячне затемнення, щоб підвищити точність своїх результатів, доведено вже, що таке зміщення існує і його величина приблизно узгоджується із загальною теорією відносності.
Інший важливий висновок полягає в тому, що поле тяжіння повинно впливати на масштаб часу, чи, точніше, нам повинно здаватися, що годинник, який знаходиться поблизу дуже масивної зірки, відстає. Це також можна перевірити, оскільки світло від гарячих зірок містить випромінювання тільки певних кольорів, тобто деяких певних частот, що, як ми знаємо, пов'язано з електричними коливаннями атомів певної частоти, що схоже на дію мініатюрних радіопередавачів. Ці атоми можна розглядати як стандартний годинник, тому що їхній період коливань є внутрішньою характеристикою атома й не залежить від зовнішніх обставин. Тепер відомо, що ці специфічні промені від деяких дуже масивних зірок мають не той самий колір, як такі ж промені від більш легких зірок; їх колір визначається червоним зміщенням.
Це узгоджується із твердженнями загальної теорії відносності. Ми повинні припустити, що, з погляду спостерігача, на поверхні зірки атомний "годинник" показуватиме правильний час, але через залежність масштабу часу від гравітаційного потенціалу для тих, хто спостерігає з великої відстані, буде здаватися, що годинник відстає, частота світла менша й наявне червоне зміщення.
Такий вплив гравітаційного потенціалу на хід годинника цікавий також завдяки його зв'язку з парадоксом, який ілюструє тісний зв'язок між ідеями загальної і спеціальної теорій відносності.
Іноді заперечують, що спеціальна теорія відносності неспроможна передбачити уповільнення ходу часу. Припустимо, що ми та інший спостерігач рухаємося один відносно одного з великою швидкістю і виявляємо, що при зустрічі наші годинники показують один і той же час. Тепер, якщо вважати, що ми перебуваємо у стані спокою, можна стверджувати, що годинник іншого спостерігача повинен відставати. У свою чергу, він сказав би, що повинен відставати наш годинник, тому що ми рухаємося з великою швидкістю. Очевидно, цього не можна спростувати, якщо ми перебуваємо один від одного на великій відстані, оскільки не можемо однозначно порівнювати час настання подій, які відбуваються у віддалених місцях. Однак, припустивши, що пізніше ми знову зустрінемо іншого спостерігача, можна сподіватися, що, порівнявши годинники, вдасться з'ясувати, який з них відставав відносно іншого, і хто насправді рухався.
У рамках спеціальної теорії відносності правильна відповідь на це заперечення полягає в тому, що, так як обидва спостерігачі рухаються один відносно одного рівномірно й прямолінійно, вони ніколи не зустрінуться знову. Якщо ж вони знову зустрінуться, то, принаймні, один з них повинен або повернути назад, або змінити напрямок свого руху і зазнати дії прискорення, так що він уже не може припускати, що весь час перебував у стані спокою.
Загальна теорія відносності дає більш повну відповідь. Для простоти міркувань припустимо, що ми рухалися без прискорення, у той час як інший спостерігач, пройшовши деяку відстань, зупинився й повернув назад. Відповідно до загальної теорії відносності, він може припускати, що увесь час перебував у стані спокою, але в присутності гравітаційного поля. Це пояснить походження сил, що діють на нього (які ми приписуємо його прискоренню). Як ми побачили, гравітаційні потенціали впливають на хід годинника, і якщо це послідовно застосувати до розглянутої ситуації, відповідь полягає в тому, що знову, з обох точок зору, показання обох годинників повинні порівнюватися в такий же спосіб.
Після цього дуже неповного обговорення ми облишимо цей цікавий розділ загальної теорії відносності. Подальше її вивчення, безумовно, сприяє повному розумінню законів природи. Загальна теорія відносності дає важливі висновки, що стосуються проблем великого масштабу, включаючи структуру Всесвіту. Можливо, що в майбутньому з'явиться яке-небудь співвідношення, що пов'язує ці ідеї і з характеристиками процесів малого масштабу, тобто з атомними проблемами, але поки що це співвідношення невідоме.
- Розділ 1. Природознавство, наука, науковий метод, пізнання і його структура
- 1.1 Що таке природознавство. Види природничих наук, предмет та мета вивчення. Класифікація методів наукового пізнання
- 1.2 Загальнонаукові методи емпіричного пізнання
- 1.2.1 Спостереження
- 1.2.2 Експеримент
- 1.2.3 Вимірювання
- 1.3 Загальнонаукові методи теоретичного пізнання
- 1.3.1 Абстрагування. Сходження від абстрактного до конкретного
- 1.3.2 Ідеалізація. Уявний експеримент
- 1.3.3 Формалізація. Мова науки
- 1.3.4 Індукція та дедукція
- 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання
- 1.4.1 Аналіз і синтез
- 1.4.2 Аналогія та моделювання
- Розділ 2. Зародження, становлення й і розвиток природознавства
- 2.1 Зародження й розвиток наукових знань у стародавньому світі
- 2.1.1 Нагромадження раціональних знань у первісну епоху (від неандертальця до homo sapiens)
- 2.1.1.1 Повсякденне, стихійно-емпіричне знання
- 2.1.1.2 Зародження рахунку
- 2.1.1.3 Астрономічні знання та календар
- 2.1.2 Міфологія
- 2.2 Становлення цивілізації
- 2.2.1 Історичні передумови виникнення цивілізації
- 2.2.2 Неолітична революція
- 2.2.2.1 Основні передумови
- 2.2.2.2 Перехід від привласнюючої економіки до відтворюючої (продуктивної")
- 2.2.3 Металургія
- 2.2.4 Розвиток гірничої справи та видобування корисних копалин
- 2.2.5 Розвиток домашніх промислів і становлення ремесла
- 2.2.6 Еволюція суспільної свідомості. Раціональні знання
- 2.2.6.1 Астрономія та календар
- 2.2.6.2 Математичні знання
- 2.2.6.3 Біологія та медицина
- 2.2.6.4 Географія та картографія
- 2.2.7 Виникнення та становлення обміну
- 2.2.8 Поділ праці
- 2.2.9 Розвиток духовної культури
- 2.2.10 Становлення писемності
- 2.2.10.1 Вихідні відомості
- 2.2.10.2 Розвиток піктографії
- 2.3 Географія та основні характеристики цивілізацій стародавнього сходу
- 2.3.1 Давньоєгипетські держави
- 2.3.2 Держави Межиріччя
- 2.3.3 Мала Азія
- 2.3.4 Східне Середземномор'я
- 2.3.5 Середня Азія та Іран
- 2.3.6 Перші держави в Індії
- 2.3.7 Стародавній Китай
- 2.3.8 Культура давньосхідних цивілізацій
- 2.3.9 Від міфу до науки
- 2.3.10 Астрономічні знання стародавнього Єгипту й Межиріччя
- 2.3.11 Вавилонська математика та її застосування у фізиці
- .4 Давні цивілізації Європи
- 2.4.1 Мінойська цивілізація
- 2.4.2 Ахейська (мікенська) цивілізація
- 2.4.3 Греція "гомерівського" періоду
- 2.5 Філософія і наука античного світу
- 2.5.1 Формування й розвиток античної цивілізації
- 2.5.2 Від "дитячості" Гомера до атомістики Демокріта
- 2.5.2.1 Філософія та поезія Гомера
- 2.5.2.2 Мислителі мілетської школи
- 2.5.2.3 Загальна характеристика піфагоризму
- 2.5.2.4 Філософське вчення елеатів
- 2.5.2.5 Античний атомізм
- 2.5.2.6 Учення Арістотеля
- 2.5.2.7 Александрійська наукова школа
- 2.5.2.8 Геоцентрична система Птолемея
- 2.5.2.9 Спад у розвитку античної науки
- 2.6 Наука середніх віків
- 2.6.1 Основна характеристика епохи середньовіччя
- 2.6.2 Наука на середньовічному сході
- 2.6.3 Наука в середньовічній Європі
- 2.6.4 Висновок
- 2.7 Природознавство в епоху Відродження
- 2.7.1 Основна характеристика епохи Відродження
- 2.7.2 Філософія епохи відродження
- 2.7.3 Кінематична статика
- 2.7.3.1 Леонардо да Вінчі
- 2.7.3.2 Тарталья і Кардано
- 2.7.4 Геометрична статика
- 2.7.4.1 Убальдо дель Монте
- 2.7.4.2 Джованні Баттиста Бенедетті
- 2.7.4.3 Сімон Стевін
- 2.7.5 Кінематика
- 2.7.5.1 Основні передумови геліоцентризму
- 2.7.5.2 М. Коперник і його геліоцентрична система світу
- 2.7.5.3 Нова космологія
- 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму
- 2.7.7 Відкриття законів руху планет
- 2.7.7.1 Життя, присвячене служінню Урани
- 2.7.7.2 Йоганн Кеплер
- 2.8 Виникнення класичної механіки
- 2.8.1 Механіка г. Галілея
- 2.8.2 Картезіанська фізика
- 2.8.2.1 Декартівська концепція вихорів
- 2.8.2.2 Учення про речовину й теплоту
- 2.8.2.3 Космогонія
- 2.8.3 Ньютонівська революція
- 2.8.3.1 Ньютон і його час
- 2.8.3.2 "Математичні начала натуральної філософії" і їх структура
- 2.8.3.3 Закон всесвітнього тяжіння
- 2.8.3.4 Математичне узагальнення
- 2.8.3.5 Ньютонівська оптика
- 2.8.3.6 Атомістичні погляди Ньютона
- 2.8.3.7 Учення Ньютона про ефір
- .8.3.8 Ньютонівська Ідея дальньої дії
- 2.8.3.9 Простір, час, рух
- 2.9 Від геометричного методу до аналітичної механіки
- 2.9.1 Принцип найменшої дії
- 2.9.2 Принцип Даламбера
- 2.9.3 Аналітична механіка матеріальної точки й динаміка твердого тіла Ейлера
- 2.9.4 Аналітична механіка системи матеріальних точок і тіл Лагранжа
- 2.9.5 Розвиток аналітичної механіки
- 2.9.5.1 Принцип Гамільтона
- 2.9.5.2 К. Г. Якобі
- 2.9.5.3 М. В. Остроградський
- 2.9.5.4 Немеханічне трактування принципу найменшої дії Гельмгольца
- 2.9.5.5 Принцип найменшого примусу Гаусса
- 2.9.5.6 "Механіка без сили" Герца
- 2.10 Виникнення й розвиток електродинаміки
- 2.10.1Перетворення електрики на магнетизм
- 2.10.2 Перетворення магнетизму на електрику
- 2.10.3 Ідея поля
- 2.10.3.1 Фізичне поле Фарадея
- 2.10.3.2 Дві основи теорії поля
- 2.10.4 Теорія електромагнітного поля Максвелла
- 2.10.4.1 Основні передумови
- 2.10.4.2 Струм зміщення
- 2.10.4.3 Реальність поля
- 2.10.4.4 Поле та ефір
- 2.11 Основні досягнення природознавства XIX століття
- Розділ з. Сучасна фізична картина світу
- 3.1 Простір і час
- 3.1.1 Загальні зауваження
- 3.1.2 Основні концепції простору й часу
- 3.1.3 Поняття простору й часу у філософії і природознавстві xvi11 -XIX століть
- 3.1.4 Розвиток уявлень про простір і час у XX столітті
- 3.2 Теорія відносності
- 3.2.1 Загальні зауваження
- 3.2.2 Абсолютно чи відносно?
- 3.2.3 Експеримент Майкельсона-Морлі
- 3.2.4 Спеціальна теорія відносності (частина і)
- 3.2.5 Спеціальна теорія відносності (частина II)
- 3.2.6 Принцип еквівалентності
- 3.2.7 Загальна теорія відносності
- 3.3 Закон збереження енергії в макроскопічних процесах
- 3.3.1 Робота в механіці, закон збереження та перетворення енергії в механіці
- 3.3.2 Перший закон термодинаміки
- 3.4 Другий закон термодинаміки та принцип зростання ентропії
- 3.4.1 Другий закон термодинаміки
- 3.4.2 Ідеальний цикл Карно
- 3.4.3 Поняття ентропії
- 3.4.4 Ентропія та імовірність
- 3.4.5 Порядок і хаос. Стріла часу
- 3.4.6 Проблема теплової смерті всесвіту. Флуктаційна гіпотеза Больцмана
- 3.4.7 Синергетика. Народження порядку з хаосу
- 3.5 Квантова механіка
- 3.5.1 Гіпотеза про кванти
- 3.5.2 Фотони
- 3.5.3 Планетарний атом
- 3.5.4 Гіпотеза де Бройля. "Хвилі матерії"
- 3.5.5 Співвідношення невизначеностей
- 3.5.6 Хвильова функція. Хвилі імовірності. Образ атома
- 3.5.7 Причинність класична і причинність квантова
- 3.5.8 Принцип додатковості
- 3.6 Світ елементарних частинок
- 3.6.1 Фундаментальні фізичні взаємодії
- 3.6.1.1 Гравітація
- 3.6.1.2 Електромагнетизм
- 3.6.1.3 Слабка взаємодія
- 3.6.1.4 Сильна взаємодія
- 3.6.1.5 Проблеми єдності фізики
- 3.6.2 Класифікація елементарних частинок
- 3.6.2.1 Характеристики субатомних частинок
- 3.6.2.2 Лептони
- 3.6.2.3 Адрони
- 3.6.2.4 Частинки — носії взаємодій
- 3.6.3 Теорії елементарних частинок
- 3.6.3.1 Квантова електродинаміка
- 3.6.3.2 Теорія кварків
- 3.6.3.3 Теорія електрослабкої взаємодії
- 3.6.3.4 Квантова хромодинаміка
- 3.6.3.5 На шляху до великого об'єднання
- 3.7 Проблеми енергетики (ядерні і термоядерні реактори)
- 3.7.1. Поділ ядер урану
- 3.7.2 Ядерні реактори
- 3.7.3 Світові енергетичні ресурси та необхідність вирішення проблеми керованого термоядерного синтезу
- Розділ 4. Сучасна астрофізика та космологія
- 4.1 Еволюція всесвіту
- 4.1.1 Класична космологія
- 4.1.2 Парадокси Шезо-Ольберса і Зеєлігера
- 4.1.3 Неевклідові геометрії
- 4.1.4 Космологічний принцип
- 4.1.5 Всесвіт Ейнштейна
- 4.1.6 Всесвіт Фрідмана
- 4.1.7 Закон Хаббла й дослідження Слайфера
- 4.1.8 Моделі Всесвіту
- 4.1.9 Модель гарячого Всесвіту. Реліктове випромінювання
- 4.1.10 Інфляційна модель
- 4.1.11 Народження Всесвіту
- 4.1.12 Варіанти майбутнього Всесвіту
- 4.1.13 Деякі труднощі гіпотези розширного Всесвіту
- 4.1.14 Проблема позаземних цивілізацій
- 4.2 Галактика і квазари
- 4.2.1 Сонце та Галактика
- 4.2.2 Метагалактика
- 4.2.3 Класифікація галактик
- 4.2.4 Обертання галактик
- 4.2.5 Походження галактик
- 4.2.6 Гіпотези про походження галактик
- 4.2.7 Квазари. Відкриття квазарів
- 4.2.8 Особливості квазарів
- 4.2.9 Розподіл квазарів у просторі
- 4.2.10 Гіпотези про походження квазарів
- 4.3 Народження та еволюція зірок
- 4.3.1 Діаграма Герцшпрунга-Рассела
- 4.3.2 Еволюція зірок
- 4.3.3 Білі карлики
- 4.3.4 Пульсари та нейтронні зірки
- 4.3.5 Чорні дірки
- 4.3.6 Змінні зірки. Цефеїди
- 4.3.7 Зоряні скупчення та асоціації
- 4.3.8 Туманності
- 4.3.9 Пояс зодіаку
- 4.4 Сонячна система
- 4.4.1 Сонце
- 4.4.2 Джерела енергії Сонця
- 4.4.3 Як утворилося сімейство планет
- 4.4.4 Планети
- 4.4.5 Малі планети
- 4.4.6 Комети, метеори й метеорити
- Розділ 5. Сучасна біологічна картина світу
- 5.1 Життя як особлива форма руху матерії
- 5.1.1 Концепції сутності життя
- 5.1.2 Аксіоми біології
- 5.1.3 Основні властивості та ознаки живих організмів
- 5.1.4 Структурні рівні організації життя
- 5.2 Теорія еволюції
- 5.2.1 Еволюційні ідеї, концепції та гіпотези в додарвінівський період
- 5.2.2 Теорія еволюції ч. Дарвіна
- 5.2.3 Подальший розвиток теорії еволюції. Дарвінізм XX століття
- 5.2.4 Пристосованість до середовища існування (адаптація)
- 5.2.5 Різноманітність живої природи
- 5.2.6 Головні напрямки еволюції
- 5.2.7 Необоротність та необмеженість процесу еволюції
- 5.3 Розвиток життя на землі
- 5.3.1 Гіпотези виникнення життя
- 5.3.2 Походження життя
- 5.3.3 Хронологія еволюції живої природи за даними палеонтології
- 5.4 Походження людини
- 5.4.1 Історія питання
- 5.4.2 Місце людини в системі тваринного світу. Докази тваринного походження людини
- 5.4.3 Якісна своєрідність людини як біосоціальної істоти
- 5.4.4 Дані палеонтології та антропології про походження людини
- Розділ 6. Учення про біосферу та ноосферу
- 6.1 Біосфера
- 6.1.1 Виникнення вчення про біосферу
- 6.1.1.1 Етапи життя та наукової творчості в. І. Вернадського
- 6.1.1.2 Концепції в. І. Вернадського про біосферу
- 6.1.2 Утворення планетної системи
- 6.1.3 Основні характеристики Землі
- 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя
- 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу
- 6.1.6 Абіогенез
- 6.1.6.1 Виникнення пробіонтів і біологічних мембран
- 6.1.7 Основні етапи еволюції живої природи
- 6.1.8 Основні характеристики біосфери
- 6.1.9 Виникнення атмосфери та гідросфери
- 6.1.10 Основні характеристики атмосфери
- 6.1.10.1 Озон та аерозолі
- 6.1.10.2 Роль вуглекислого газу
- 6.1.10.3 Вплив атмосфери на радіаційний баланс Землі
- 6.1.11 Гідросфера
- 6.1.12 Взаємодія океану та атмосфери
- 6.1.13 Вологообіг
- 6.1.14 Жива речовина
- 6.1.15 Кругообіг вуглецю
- 6.2 Ноосфера
- 6.2.1 Розвиток і становлення людини
- 6.2.2 Виникнення вчення про ноосферу
- 6.2.2.1 Основні положення вчення про ноосферу е. Леруа і Тайяра де Шардена.
- 6.2.2.2 Концепція ноосфери в. І. Вернадського
- 6.2.3 Перехід біосфери в ноосферу
- 6.2.4 Умови, необхідні для становлення та існування ноосфери
- 6.2.5 Наука як основний чинник ноосфери
- 6.2.6 Проблеми становлення ноосфери