logo
Концепції сучасного природознавства Я

3.6.3.5 На шляху до великого об'єднання

Зі створенням квантової хромодинаміки з'явилася надія на побудову єдиної теорії усіх (чи хоча 6 трьох із чотирьох) фундаментальних взаємодій. Моделі, які поєднують в єдине ціле хоча б три з чотирьох фундаментальні взаємодії, називаються моделями Великого об'єднання. Теоретичні схеми, які поєднують усі відомі типи взаємодій (сильну, слабку електромагнітну й гравітаційну) називаються моделями супергравітації.

Досвід успішного об'єднання слабкої й електромагнітної взаємодій на основі ідеї калібрувальних полів вказав можливі шляхи для подальшого розвитку принципу єдності фізики, об'єднання фундаментальних фізичних взаємодій. Один з них базується на тому дивному факті, що константи взаємодії електромагнітної, слабкої і сильної взаємодій стають рівними за однієї і тієї ж енергії. Цю енергію назвали енергією об'єднання. Коли значення енергії перевищують м ГеВ або відстані становлять м, сильні й слабкі взаємодії можна описати за допомогою єдиної константи, тобто вони мають загальну природу. Кварки й лептони тут практично не помітні.,

У 70-90-і pp. було розроблено кілька конкуруючих між собою теорій Великого об'єднання. Усі вони базуються на одній і тій же ідеї. Якщо електрослабка й сильна взаємодії дійсно являють собою лише дві сторони Великої єдиної взаємодії, то останній також повинно відповідати калібрувальне поле з деякою складною симетрією. Вона повинна бути досить загальною, здатною охопити всі калібрувальні симетрії, які існують і у квантовій хромодинаміці, і в теорії електрослабкої взаємодії. Відкриття такої симетрії — головне завдання на шляху до створення єдиної теорії сильної та електрослабкої взаємодії. Існують різні підходи, що породжує конкуруючі варіанти теорії Великого об'єднання.

Проте всі ці гіпотетичні варіанти Великого об'єднання мають ряд загальних особливостей. По-перше, у всіх гіпотезах кварки й лептони — носії сильної та електрослабкої взаємодій — є складовими єдиної теоретичної схеми. Дотепер вони розглядалися як зовсім різні об'єкти. По-друге, залучення абстрактних калібрувальних симетрій приводить до відкриття нових типів полів, які мають нові властивості, наприклад здатність перетворювати кварки в лептони.

У найпростішому варіанті теорії Великого об'єднання для перетворення кварків на лептони потрібно двадцять чотири поля. Дванадцять із квантів цих полів уже відомі: фотон, дві W-частинки, Z-частинка і вісім глюонів. Інші дванадцять квантів — нові надважкі проміжні бозони, об'єднані загальною назвою X- і К-частинки (мають колір та електричний заряд). Ці кванти відповідають полям, які підтримують більш широку калібрувальну симетрію і перемішують кварки з лептонами. Отже, X- і У-частинки можуть перетворювати кварки на лептони (і навпаки).

На основі теорій Великого об'єднання вдалося передбачити принаймні дві важливі закономірності, які можна перевірити експериментально: нестабільність протона й існування магнітних монополів. Експериментальне виявлення розпаду протона й магнітних монополів могло б стати вагомим доказом на користь теорій Великого об'єднання. На перевірку цих передбачень спрямовані зусилля експериментаторів. Відкриття розпаду протона було б найфандіознішим експериментом XXI ст.І Але поки що твердо обгрунтованих експериментальних даних із цієї проблеми немає.

А про пряме експериментальне виявлення X- і У-бозонів поки що взагалі не йдеться. Річ у тім, що теорії Великого об'єднання мають справу з енергією частинок понад м ГеВ. Це луже висока енергія. Важко сказати, коли вдасться одержати частинки настільки високих енергій у прискорювачах. Сучасні прискорювачі ледве досягають енергії 100 ГеВ. І тому основною областю застосування й перевірки теорій Великого об'єднання є космологія. Без цих теорій неможливо описати ранню стадію еволюції Всесвіту, коли температура первинної плазми досягала К. Саме за таких умов могли народжуватися й анігілювати над важкі бозони X і Y.

Але об'єднання трьох з чотирьох фундаментальних взаємодій — це ще не єдина теорія в справжньому розумінні слова. Адже залишається ще гравітація. Теоретичні моделі, в яких поєднуються всі чотири взаємодії, називаються супергравітацією.

Супергравітація базується на ідеї суперсиметрії, тобто такого переходу від глобально! калібрувальної симетрії до локальної, який би дозволив переходити від фер-міонів (носіїв субстрату матерії) до бозонів (носіїв структури матерії, переносників взаємодій) і навпаки. Одна з теоретичних моделей зводить воєдино 70 частинок зі спіном 0; 56 частинок зі спином 1/2; 28 частинок зі спіном 1; 8 частинок зі спіном 3/2 (їх назвали гравітино) і 1 частинку зі спіном 2 (гравітон). Усі ці частинки були об'єднані єдиною суперсилою при колосальному значенні енергії ГеВ (T= К, м). У теоріях суперсиметрії виникла також ідея введення нових додаткових вимірів (10,11 чи навіть 26) простору, які дозволять описати всі прояви властивостей речовини й переносників взаємодій. Тільки три з них виявляються в нашому світі, а інші залишилися скрученими, замкнутими в масштабі м. Разом з тим на шляху об'єднання гравітації з іншими фундаментальними взаємодіями поки ще залишається багато проблем.

Таким чином, послідовне об'єднання фундаментальних взаємодій почалося із синтезу електрики й магнетизму в рамках теорії Максвелла в XIX ст. Об'єднання слабкої й електромагнітної взаємодій дістало надійне підтвердження в 1983 р. завдяки відкриттю X- і У-частинок. Даних, які підтверджували 6 Велике об'єднання, поки що немає, але на них чекають. Забезпеченість теоретичними передумовами для створення єдиної теорії усіх фундаментальних взаємодій швидко зростає. Можливо, що вже на початку XXI ст. це найграндіозніше завдання всієї історії пізнання матерії буде вирішено У певному розумінні це означає кінець фізичної науки як науки про фундаментальні основи матерії.

Але не слід відкидати й інші варіанти розвитку фізики у XXI ст. — відкриття нових фундаментальних взаємодій, нових субкваркових частинок, появу інших трактувань єдності матерії й ін. Особливо вагомими на цьому шляху є ті незвичайні уявлення, які у наш час з'являються там, де взаємодіють мікросвіт із мегасвітом, ультрамале з ультравеликим, фізика з астрономією і космологією.