2.8.3.3 Закон всесвітнього тяжіння
Ще в давнину, спостерігаючи за рухом планет, люди здогадувалися, що всі вони, разом із Землею, рухаються навколо Сонця. Пізніше, коли було забуто, про що знали колись, це відкриття заново зробив Коперник. І тоді виникли нові запитання: як саме планети рухаються навколо Сонця" який характер їхнього руху? Чи рухаються вони по колу й Сонце знаходиться в центрі, чи вони рухаються по якійсь іншій кривій? Як швидко вони рухаються? І так далі. З'ясувалося це не так швидко. Після Коперника знову настали неспокійні часи й розпочалися суперечки про те, чи обертаються планети разом із Землею навколо Сонця, чи Земля знаходиться в центрі Всесвіту. Тіхо Браге знайшов вихід із скрутного становища, що склалося на той час. Він прийшов до висновку, що потрібно дуже уважно стежити, де з'являються на небі планети, точно записувати дані спостережень і тоді уже вибирати між двома супротивними теоріями. Це і було початком сучасної науки, становленням нових підходів до правильного розуміння природи — спостерігати за явищем, записувати всі подробиці й використовувати їх для того чи іншого теоретичного тлумачення. І от Тіхо Браге у своїй обсерваторії фіксував щоночі положення планет. Величезну кількість високоточних даних Браге заповідав Кеплеру, який і спробував дати відповідь на питання, як рухаються планети навколо Сонця. У кінцевому підсумку Кеплер установив, що планети рухаються навколо Сонця по еліпсах, а Сонце знаходиться в одному з фокусів. Потім він відкрив другий і третій закони, які названі його ім'ям. Ці три закони вичерпно описують рух планет навколо Сонця. Але яка сила змушує планети рухатися?
Тим часом Галілей досліджував закони руху звичайнісіньких предметів, що були в нього під рукою. Вивчаючи рух кульки по похилій площині, хитання маятника й т.д., Галілей відкрив принцип інерції, відповідно до якого, якщо на предмет ніщо не діє і він рухається з певною швидкістю по прямій лінії, то рух відбуватиметься із цією ж швидкістю по цій же прямій лінії вічно.
Потім прийшов час Ньютона. Розмірковуючи над питанням: а якщо кулька не котиться по прямій лінії, що тоді? — він відповів так: для того, щоб хоч якось змінити її швидкість, потрібна сила. Наприклад, якщо ви підштовхнете кульку в тому напрямку, у якому вона котиться, то вона покотиться швидше. Якщо ви помітили, що вона повернула вбік, значить сила діяла збоку. Силу можна охарактеризувати добутком двох величин — прискорення й маси тіла. Силу можна і виміряти: наприклад, якщо ми прив'яжемо до мотузки камінь і почнемо крутити його над головою, то відчуємо, що мотузку треба тягти. Чим більша маса, тим сильніше потрібно тягти мотузку. Коли камінь рухається по колу, величина швидкості не змінюється, зате змінюється її напрямок. Ньютон вирішив, що планеті, яка обертається навколо Сонця, не потрібна сила, щоб рухатися вперед; якби ніякої сили не було, планета рухалася 6 по дотичній. Але насправді планета рухається не по прямій. її рух постійно відхиляється в бік Сонця. Щоб так викривити траєкторію, потрібна сила. Стало зрозуміло, що джерело цієї сили знаходиться десь біля Сонця. І Ньютонові вдалося довести, що другий закон Кеплера — закон рівності площ — безпосередньо випливає із тієї простої ідеї, що всі зміни у швидкості спрямовані до Сонця, навіть у випадку еліптичної орбіти. Цей закон посилив переконаність Ньютона в тому, що сила, яка діє на планет ти, спрямована до Сонця і що, знаючи, як період обертання різних планет залежить від відстані до Сонця, можна визначити, як слабшає сила з відстанню. Він довів, що сила оберненопропорційна квадрату відстані. Дотепер Ньютон не сказав нічого нового — він лише повторив іншими словами те, що сказав до нього Кеплер. Один закон Кеплера рівнозначний твердженню, що сила спрямована до Сонця, а інший — твердженню, що сила оберненопропорційна квадрату відстані й не залежить ні від яких інших величин, крім відстані.
Вихідний факт, покладений в основу Ньютонової теорії тяжіння, — вага, яку мають всі тіла, що знаходяться на Землі. З рівності прискорення для всіх падаючих тіл, доведеної численними експериментами, Ньютон встановлює, що ваги тіл, рів-новіддалених від центра Землі, відносяться як кількості матерії, чи маси тіл. За умови однакової віддаленості від центра Землі сили, з якими тіла притягають до себе Землю, відповідно пропорційні масам. Звідси випливає, що сила тяжіння, властива конкретному тілу, складається із сил тяжіння його частин. Тому всі земні тіла притягаються одне до одного із силою, пропорційною кількості матерії, тобто масі кожного тіла.
Установивши властивості земної ваги, Ньютон поставив за мету визначити тяжіння в небесному просторі. Як було зазначено вище, сила, що є причиною доцентрового прискорення планети, спрямована, як і саме прискорення, до Сонця, інакше кажучи, ця сила притягає планету до Сонця. Вона дорівнює прискоренню, помноженому на масу. З іншого боку, вага, що надає тілам рівномірного прискорення, спрямована до центра Землі й пропорційна масі. Ньютон припустив, що йдеться не про аналогію, а про тотожність, тобто ототожнив рух небесних тіл з падінням вантажів на Землі.
Установивши цей факт, Ньютон завершив об'єднання астрономії і земної механіки. Усю геніальну сміливість цієї ідеї важко зараз оцінити, настільки глибоко ввійшов закон всесвітнього тяжіння в науку.
Згодом Ньютон досліджує, чи можна за допомогою астрономічних спостережень підтвердити обернену пропорційність між квадратами відстаней і доцентровим прискоренням. Він припустив, що Місяць на орбіті утримують ті ж сили, що притягають предмети до Землі. Взявши за основу астрономічні дані, Ньютон підрахував, наскільки відхиляється Місяць за секунду від прямої лінії, по якій він повинен був би рухатися, якби його не притягувала Земля. Ця величина дещо більша, ніж 1,25 мм. Місяць знаходиться в 60 разів далі від центра Землі, ніж ми. Отже, якщо закон оберненої іропорційної залежності від квадрата відстані є вірним, то предмет біля поверхні Землі при падінні повинен пролітати за секунду 1,25 • 602, тому що на орбіті Місяця предмети притягаються в 60-60 разів слабкіше. Отже, 1,25 602 — це приблизно 5 м. Вимірювання Галілея показали, що, падаючи біля поверхні Землі, тіла пролітають за секунду 5 м. Це означало, що Ньютон на вірному шляху, тому що якщо раніше були відомі два незалежних факти: по-перше, період обертання Місяця й величина його орбіти і, по-друге, відстань, яку пролітає тіло, падаючи біля поверхні Землі, — то тепер ці факти виявилися тісно пов'язаними.
Таким чином, доцентрова сила, яка впливає на рух Місяця, на поверхні Землі повинна була б дорівнювати силі ваги. Сила, з якою Земля притягує Місяць і спричинює його рух по криволінійній орбіті, є земна сила ваги, дія якої поширюється аж до Місяця.
Якщо Земля притягує Місяць, то і Місяць з такою ж силою притягує Землю. З кеплерівських законів обертання планет навколо Сонця випливає, що доцентрова сила планет спрямована до центра Сонця, а доцентрова сила супутників — до центрів планет; ці сили оберненопропорційні квадратам відстаней до центрів тяжіння. Таким чином, закон тяжіння пояснює також рух планет і їхніх супутників. Досліджуючи рух комет, припливи й т.д., Ньютон в усьому бачить підтвердження свого закону.
Пізніше він переходить від небесних тіл до мікросвіту й прагне довести, що дрібні частинки речовини також зазнають взаємного тяжіння, яке пропорційне їх масі. Учений стверджує, що всі, без винятку, тіла — від нерухомих зірок до дрібних частинок — зазнають тяжіння, величина якого пропорційна добутку їхніх мас та оберненопропорційна квадрату відстані. Земля притягує Місяць, але і її саму притягує Сонце, і все це доповнюється зворотним впливом Місяця на Землю, Землі на Сонце й т.д. Відповідно, формула доцентрового прискорення перетворюється на формулу взаємного тяжіння
де G - множник пропорційності, а
— маси тіл, які взаємно притягаються одне до одного.
Віддаючи данину генію Ньютона, усе-таки слід зазначити, що закон всесвітнього тяжіння має ряд недоліків: він неспроможний, коли йдеться про обчислення руху Меркурія, передавання тяжіння через порожнечу, він визнає необхідність першого поштовху. На що "тірокляті питання" старої механіки дала відповідь загальна теорія відносності.
- Розділ 1. Природознавство, наука, науковий метод, пізнання і його структура
- 1.1 Що таке природознавство. Види природничих наук, предмет та мета вивчення. Класифікація методів наукового пізнання
- 1.2 Загальнонаукові методи емпіричного пізнання
- 1.2.1 Спостереження
- 1.2.2 Експеримент
- 1.2.3 Вимірювання
- 1.3 Загальнонаукові методи теоретичного пізнання
- 1.3.1 Абстрагування. Сходження від абстрактного до конкретного
- 1.3.2 Ідеалізація. Уявний експеримент
- 1.3.3 Формалізація. Мова науки
- 1.3.4 Індукція та дедукція
- 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання
- 1.4.1 Аналіз і синтез
- 1.4.2 Аналогія та моделювання
- Розділ 2. Зародження, становлення й і розвиток природознавства
- 2.1 Зародження й розвиток наукових знань у стародавньому світі
- 2.1.1 Нагромадження раціональних знань у первісну епоху (від неандертальця до homo sapiens)
- 2.1.1.1 Повсякденне, стихійно-емпіричне знання
- 2.1.1.2 Зародження рахунку
- 2.1.1.3 Астрономічні знання та календар
- 2.1.2 Міфологія
- 2.2 Становлення цивілізації
- 2.2.1 Історичні передумови виникнення цивілізації
- 2.2.2 Неолітична революція
- 2.2.2.1 Основні передумови
- 2.2.2.2 Перехід від привласнюючої економіки до відтворюючої (продуктивної")
- 2.2.3 Металургія
- 2.2.4 Розвиток гірничої справи та видобування корисних копалин
- 2.2.5 Розвиток домашніх промислів і становлення ремесла
- 2.2.6 Еволюція суспільної свідомості. Раціональні знання
- 2.2.6.1 Астрономія та календар
- 2.2.6.2 Математичні знання
- 2.2.6.3 Біологія та медицина
- 2.2.6.4 Географія та картографія
- 2.2.7 Виникнення та становлення обміну
- 2.2.8 Поділ праці
- 2.2.9 Розвиток духовної культури
- 2.2.10 Становлення писемності
- 2.2.10.1 Вихідні відомості
- 2.2.10.2 Розвиток піктографії
- 2.3 Географія та основні характеристики цивілізацій стародавнього сходу
- 2.3.1 Давньоєгипетські держави
- 2.3.2 Держави Межиріччя
- 2.3.3 Мала Азія
- 2.3.4 Східне Середземномор'я
- 2.3.5 Середня Азія та Іран
- 2.3.6 Перші держави в Індії
- 2.3.7 Стародавній Китай
- 2.3.8 Культура давньосхідних цивілізацій
- 2.3.9 Від міфу до науки
- 2.3.10 Астрономічні знання стародавнього Єгипту й Межиріччя
- 2.3.11 Вавилонська математика та її застосування у фізиці
- .4 Давні цивілізації Європи
- 2.4.1 Мінойська цивілізація
- 2.4.2 Ахейська (мікенська) цивілізація
- 2.4.3 Греція "гомерівського" періоду
- 2.5 Філософія і наука античного світу
- 2.5.1 Формування й розвиток античної цивілізації
- 2.5.2 Від "дитячості" Гомера до атомістики Демокріта
- 2.5.2.1 Філософія та поезія Гомера
- 2.5.2.2 Мислителі мілетської школи
- 2.5.2.3 Загальна характеристика піфагоризму
- 2.5.2.4 Філософське вчення елеатів
- 2.5.2.5 Античний атомізм
- 2.5.2.6 Учення Арістотеля
- 2.5.2.7 Александрійська наукова школа
- 2.5.2.8 Геоцентрична система Птолемея
- 2.5.2.9 Спад у розвитку античної науки
- 2.6 Наука середніх віків
- 2.6.1 Основна характеристика епохи середньовіччя
- 2.6.2 Наука на середньовічному сході
- 2.6.3 Наука в середньовічній Європі
- 2.6.4 Висновок
- 2.7 Природознавство в епоху Відродження
- 2.7.1 Основна характеристика епохи Відродження
- 2.7.2 Філософія епохи відродження
- 2.7.3 Кінематична статика
- 2.7.3.1 Леонардо да Вінчі
- 2.7.3.2 Тарталья і Кардано
- 2.7.4 Геометрична статика
- 2.7.4.1 Убальдо дель Монте
- 2.7.4.2 Джованні Баттиста Бенедетті
- 2.7.4.3 Сімон Стевін
- 2.7.5 Кінематика
- 2.7.5.1 Основні передумови геліоцентризму
- 2.7.5.2 М. Коперник і його геліоцентрична система світу
- 2.7.5.3 Нова космологія
- 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму
- 2.7.7 Відкриття законів руху планет
- 2.7.7.1 Життя, присвячене служінню Урани
- 2.7.7.2 Йоганн Кеплер
- 2.8 Виникнення класичної механіки
- 2.8.1 Механіка г. Галілея
- 2.8.2 Картезіанська фізика
- 2.8.2.1 Декартівська концепція вихорів
- 2.8.2.2 Учення про речовину й теплоту
- 2.8.2.3 Космогонія
- 2.8.3 Ньютонівська революція
- 2.8.3.1 Ньютон і його час
- 2.8.3.2 "Математичні начала натуральної філософії" і їх структура
- 2.8.3.3 Закон всесвітнього тяжіння
- 2.8.3.4 Математичне узагальнення
- 2.8.3.5 Ньютонівська оптика
- 2.8.3.6 Атомістичні погляди Ньютона
- 2.8.3.7 Учення Ньютона про ефір
- .8.3.8 Ньютонівська Ідея дальньої дії
- 2.8.3.9 Простір, час, рух
- 2.9 Від геометричного методу до аналітичної механіки
- 2.9.1 Принцип найменшої дії
- 2.9.2 Принцип Даламбера
- 2.9.3 Аналітична механіка матеріальної точки й динаміка твердого тіла Ейлера
- 2.9.4 Аналітична механіка системи матеріальних точок і тіл Лагранжа
- 2.9.5 Розвиток аналітичної механіки
- 2.9.5.1 Принцип Гамільтона
- 2.9.5.2 К. Г. Якобі
- 2.9.5.3 М. В. Остроградський
- 2.9.5.4 Немеханічне трактування принципу найменшої дії Гельмгольца
- 2.9.5.5 Принцип найменшого примусу Гаусса
- 2.9.5.6 "Механіка без сили" Герца
- 2.10 Виникнення й розвиток електродинаміки
- 2.10.1Перетворення електрики на магнетизм
- 2.10.2 Перетворення магнетизму на електрику
- 2.10.3 Ідея поля
- 2.10.3.1 Фізичне поле Фарадея
- 2.10.3.2 Дві основи теорії поля
- 2.10.4 Теорія електромагнітного поля Максвелла
- 2.10.4.1 Основні передумови
- 2.10.4.2 Струм зміщення
- 2.10.4.3 Реальність поля
- 2.10.4.4 Поле та ефір
- 2.11 Основні досягнення природознавства XIX століття
- Розділ з. Сучасна фізична картина світу
- 3.1 Простір і час
- 3.1.1 Загальні зауваження
- 3.1.2 Основні концепції простору й часу
- 3.1.3 Поняття простору й часу у філософії і природознавстві xvi11 -XIX століть
- 3.1.4 Розвиток уявлень про простір і час у XX столітті
- 3.2 Теорія відносності
- 3.2.1 Загальні зауваження
- 3.2.2 Абсолютно чи відносно?
- 3.2.3 Експеримент Майкельсона-Морлі
- 3.2.4 Спеціальна теорія відносності (частина і)
- 3.2.5 Спеціальна теорія відносності (частина II)
- 3.2.6 Принцип еквівалентності
- 3.2.7 Загальна теорія відносності
- 3.3 Закон збереження енергії в макроскопічних процесах
- 3.3.1 Робота в механіці, закон збереження та перетворення енергії в механіці
- 3.3.2 Перший закон термодинаміки
- 3.4 Другий закон термодинаміки та принцип зростання ентропії
- 3.4.1 Другий закон термодинаміки
- 3.4.2 Ідеальний цикл Карно
- 3.4.3 Поняття ентропії
- 3.4.4 Ентропія та імовірність
- 3.4.5 Порядок і хаос. Стріла часу
- 3.4.6 Проблема теплової смерті всесвіту. Флуктаційна гіпотеза Больцмана
- 3.4.7 Синергетика. Народження порядку з хаосу
- 3.5 Квантова механіка
- 3.5.1 Гіпотеза про кванти
- 3.5.2 Фотони
- 3.5.3 Планетарний атом
- 3.5.4 Гіпотеза де Бройля. "Хвилі матерії"
- 3.5.5 Співвідношення невизначеностей
- 3.5.6 Хвильова функція. Хвилі імовірності. Образ атома
- 3.5.7 Причинність класична і причинність квантова
- 3.5.8 Принцип додатковості
- 3.6 Світ елементарних частинок
- 3.6.1 Фундаментальні фізичні взаємодії
- 3.6.1.1 Гравітація
- 3.6.1.2 Електромагнетизм
- 3.6.1.3 Слабка взаємодія
- 3.6.1.4 Сильна взаємодія
- 3.6.1.5 Проблеми єдності фізики
- 3.6.2 Класифікація елементарних частинок
- 3.6.2.1 Характеристики субатомних частинок
- 3.6.2.2 Лептони
- 3.6.2.3 Адрони
- 3.6.2.4 Частинки — носії взаємодій
- 3.6.3 Теорії елементарних частинок
- 3.6.3.1 Квантова електродинаміка
- 3.6.3.2 Теорія кварків
- 3.6.3.3 Теорія електрослабкої взаємодії
- 3.6.3.4 Квантова хромодинаміка
- 3.6.3.5 На шляху до великого об'єднання
- 3.7 Проблеми енергетики (ядерні і термоядерні реактори)
- 3.7.1. Поділ ядер урану
- 3.7.2 Ядерні реактори
- 3.7.3 Світові енергетичні ресурси та необхідність вирішення проблеми керованого термоядерного синтезу
- Розділ 4. Сучасна астрофізика та космологія
- 4.1 Еволюція всесвіту
- 4.1.1 Класична космологія
- 4.1.2 Парадокси Шезо-Ольберса і Зеєлігера
- 4.1.3 Неевклідові геометрії
- 4.1.4 Космологічний принцип
- 4.1.5 Всесвіт Ейнштейна
- 4.1.6 Всесвіт Фрідмана
- 4.1.7 Закон Хаббла й дослідження Слайфера
- 4.1.8 Моделі Всесвіту
- 4.1.9 Модель гарячого Всесвіту. Реліктове випромінювання
- 4.1.10 Інфляційна модель
- 4.1.11 Народження Всесвіту
- 4.1.12 Варіанти майбутнього Всесвіту
- 4.1.13 Деякі труднощі гіпотези розширного Всесвіту
- 4.1.14 Проблема позаземних цивілізацій
- 4.2 Галактика і квазари
- 4.2.1 Сонце та Галактика
- 4.2.2 Метагалактика
- 4.2.3 Класифікація галактик
- 4.2.4 Обертання галактик
- 4.2.5 Походження галактик
- 4.2.6 Гіпотези про походження галактик
- 4.2.7 Квазари. Відкриття квазарів
- 4.2.8 Особливості квазарів
- 4.2.9 Розподіл квазарів у просторі
- 4.2.10 Гіпотези про походження квазарів
- 4.3 Народження та еволюція зірок
- 4.3.1 Діаграма Герцшпрунга-Рассела
- 4.3.2 Еволюція зірок
- 4.3.3 Білі карлики
- 4.3.4 Пульсари та нейтронні зірки
- 4.3.5 Чорні дірки
- 4.3.6 Змінні зірки. Цефеїди
- 4.3.7 Зоряні скупчення та асоціації
- 4.3.8 Туманності
- 4.3.9 Пояс зодіаку
- 4.4 Сонячна система
- 4.4.1 Сонце
- 4.4.2 Джерела енергії Сонця
- 4.4.3 Як утворилося сімейство планет
- 4.4.4 Планети
- 4.4.5 Малі планети
- 4.4.6 Комети, метеори й метеорити
- Розділ 5. Сучасна біологічна картина світу
- 5.1 Життя як особлива форма руху матерії
- 5.1.1 Концепції сутності життя
- 5.1.2 Аксіоми біології
- 5.1.3 Основні властивості та ознаки живих організмів
- 5.1.4 Структурні рівні організації життя
- 5.2 Теорія еволюції
- 5.2.1 Еволюційні ідеї, концепції та гіпотези в додарвінівський період
- 5.2.2 Теорія еволюції ч. Дарвіна
- 5.2.3 Подальший розвиток теорії еволюції. Дарвінізм XX століття
- 5.2.4 Пристосованість до середовища існування (адаптація)
- 5.2.5 Різноманітність живої природи
- 5.2.6 Головні напрямки еволюції
- 5.2.7 Необоротність та необмеженість процесу еволюції
- 5.3 Розвиток життя на землі
- 5.3.1 Гіпотези виникнення життя
- 5.3.2 Походження життя
- 5.3.3 Хронологія еволюції живої природи за даними палеонтології
- 5.4 Походження людини
- 5.4.1 Історія питання
- 5.4.2 Місце людини в системі тваринного світу. Докази тваринного походження людини
- 5.4.3 Якісна своєрідність людини як біосоціальної істоти
- 5.4.4 Дані палеонтології та антропології про походження людини
- Розділ 6. Учення про біосферу та ноосферу
- 6.1 Біосфера
- 6.1.1 Виникнення вчення про біосферу
- 6.1.1.1 Етапи життя та наукової творчості в. І. Вернадського
- 6.1.1.2 Концепції в. І. Вернадського про біосферу
- 6.1.2 Утворення планетної системи
- 6.1.3 Основні характеристики Землі
- 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя
- 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу
- 6.1.6 Абіогенез
- 6.1.6.1 Виникнення пробіонтів і біологічних мембран
- 6.1.7 Основні етапи еволюції живої природи
- 6.1.8 Основні характеристики біосфери
- 6.1.9 Виникнення атмосфери та гідросфери
- 6.1.10 Основні характеристики атмосфери
- 6.1.10.1 Озон та аерозолі
- 6.1.10.2 Роль вуглекислого газу
- 6.1.10.3 Вплив атмосфери на радіаційний баланс Землі
- 6.1.11 Гідросфера
- 6.1.12 Взаємодія океану та атмосфери
- 6.1.13 Вологообіг
- 6.1.14 Жива речовина
- 6.1.15 Кругообіг вуглецю
- 6.2 Ноосфера
- 6.2.1 Розвиток і становлення людини
- 6.2.2 Виникнення вчення про ноосферу
- 6.2.2.1 Основні положення вчення про ноосферу е. Леруа і Тайяра де Шардена.
- 6.2.2.2 Концепція ноосфери в. І. Вернадського
- 6.2.3 Перехід біосфери в ноосферу
- 6.2.4 Умови, необхідні для становлення та існування ноосфери
- 6.2.5 Наука як основний чинник ноосфери
- 6.2.6 Проблеми становлення ноосфери