3.7.1. Поділ ядер урану
Нейтрон — це ключ, який відкрив шлях до використання запасів внутрішньоядерної енергії. Тепер ми знаємо про нього багато: він не має заряду, його маса трохи перевищує масу протона, а всі атомні ядра являють собою щільне упакування із суміші протонів і нейтронів. Джеймс Чедвік, співробітник лабораторії Е. Резерфорда, відразу ж після відкриття нейтрона в 1932 році висунув гіпотезу про протонно-нейтронну структуру ядра. Ця гіпотеза цілком себе підтвердила й жодного разу не піддалася сумнівам.
Першим, хто відразу ж зрозумів, що нейтрон — це ідеальний засіб для дослідження ядерних реакцій, був великий італійський фізик Енріко Фермі. Головна відмінність і перевага нейтрона — його електронейтральність, що дозволяє йому безперешкодно проникати в ядра будь-яких навіть найважчих елементів.
Е. Фермі більше відомий як теоретик, однак Нобелівську премію він одержав за роботи з експериментальної фізики. Будь-яка з наукових спеціалізацій була для нього завузькою, він був натуралістом у найточнішому й найширшому розумінні цього слова. Така універсальність — якість для XX століття надзвичайно рідкісна — виявилася вкрай необхідною для вирішення проблеми атомної енергії, де кожен крок був кроком у невідоме.
Улітку 1934 року група молодих італійських фізиків (старшому — Е. Фермі — було лише 33 роки) захоплено експериментувала: вони опромінювали нейтронами різні елементи й спостерігали, що відбувається. Ідея їхніх дослідів полягала в одержанні штучних ізотопів. Дійсно, коли нейтрон поглинається яким-небудь ядром, воно перетворюється в ізотоп того ж елемента, що у свою чергу прагне позбутися зайвого нейтрона. Найпростіший шлях — перетворити нейтрон у протон, вивільнивши при цьому електрон. Коли відбувається такий р- розпад, утворюється ядро нового елемента, яке має заряд і масу на одну одиницю більші, ніж у вихідного ядра. За короткий період "команда Фермі" опромінила 68 елементів і синтезувала майже півсотні нових ізотопів.
Але головне відкриття чекало на них 22 жовтня 1934 року: нейтрони в сотні разів ефективніше захоплюються ядрами, якщо на шляху нейтронів установити шматок парафіну або опустити мішень під воду. Подив учених не проходив аж дві години -- доти, поки Фермі з властивою йому елегантністю не окреслив контури нового фізичного явища. Суть його надзвичайно проста: молекули води Н20 складаються з водню й кисню, а маса нейтрона практично дорівнює масі протона. Тому при зіткненні нейтрона з ядрами водню він швидко сповільнюється — у десятки разів швидше, ніж при зіткненнях з важкими ядрами, — а після цього легко вступає в ядерні реакції.
Подив звичайно є наслідком зіткнення несподіваних чинників з інерцією мислення. За багато років фізики звикли до думки, що ядро — це хоч і не підвладне відчуттям, але щось дуже міцне, і щоб його змінити, необхідно якнайсильніше розігнати снаряд — нехай це буде протон чи а-частинка. Із цією метою було навіть винайдено прискорювачі. А для нейтрона все виявилося навпаки: чим повільніше він рухався, тим легше ядра поглинали його. На відкриття ядерних реакцій, зумовлених повільними нейтронами, чекало велике майбутнє: без нього не можна було б запустити ядерний реактор. У 1938 році Енріко Фермі був удостоєний Нобелівської премії "За відкриття штучної радіоактивності, викликаної бомбардуванням повільними нейтронами".
Серед великої кількості елементів, які Е. Фермі зі своїми співробітниками опромінювали повільними нейтронами того літа 1934 року, був і уран, що займав тоді останнє місце в таблиці Д. І. Менделєєва. Заряд його дорівнює 92, тому якщо ядро урану захопить нейтрон з наступним випромінюванням електрона, то його заряд збільшиться на одиницю, а уран перетвориться на наступний за ураном "трансурановий елемент" з номером 93.3 дослідів Фермі такий висновок випливав настільки природно, що він відразу ж став науковою сенсацією і надбанням газет. Багато хто з раліохіміків почали пошук "трансуранових" елементів.
Німецькі радіохіміки Отто Ган і Фріц Штрассман у 1937 році повторили досліди Ферми з опромінення урану нейтронами. Детальний хімічний аналіз продуктів, що утворилися після опромінення урану, поставив їх у безвихідь: було зафіксовано барій, лантан, церій — елементи, що знаходяться в середній частині 'таблиці Менделєєва! Нам важко зрозуміти зараз їхнє здивування: уже в школі ми дізнаємося, що ядро урану зазнає поділу, і не бачимо в цьому нічого дивного. Спробуємо, однак, глянути на це явище очима першовідкривачів і, якщо не зрозуміти, то хоча б відчути корінь їхніх сумнівів. Насамперед, вони — хіміки, і хімічний елемент для них — якась надзвичайно стійка індивідуальність, яка залишається неушкодженою, пройшовши через жар і холод, нескінченні розчинення, кристалізації і бурхливі хімічні реакції. Лише недавно вони, на превелику силу, звикли до того, що іноді, у процесі радіоактивного розпаду ядер, один елемент може перетворитися на інший. Але найбільше, чого можна було б у цьому випадку домогтися, — це пересунути елемент у таблиці Менделєєва на одну, максимум на дві клітинки. Але ж порядковий номер барію — 56 — майже вдвічі менший, ніж порядковий номер у рану 11 якщо повірити в те, що барій дійсно утворився з урану, доведеться припустити, що елементи в таблиці Менделєєва можна переміщати, як завгодно, — жоден хімік змиритися із цим не міг.
Зміст результатів, які отримали в Німеччині О. Ган і Ф. Штрассман, розтлумачили Лізе Мейтнер і її племінник Отто Фріш: Гай і Штрассман спостерігали розпад ядра урану внаслідок захоплення ним нейтрона (трохи пізніше вони, на пропозицією біолога У. Арнольда, ввели загальноприйнятий тепер термін "поділ ядра" — за аналогією з поділом клітинии, точнісінько так само, як за чверть століття до них Резерфорд увів поняття "ядро атома" за аналогією з ядром клітини). Але, найголовніше те, що вони відразу зрозуміли, що при такому поділі повинна виділятися величезна енергія: при поділі ядер, що містяться в 1 грамі урану, виділяється енергія, яку можна отримати при спалюваній 3 тонн вугілля!
Із цього моменту події ввійшли в стрімкий і крутий розвиток, і рахунок часу пішов не на роки й місяці, а на тижні й дні. Уже через кілька тижнів явище поділу ядра спостерігали десятки дослідників у багатьох лабораторіях — від Нью-Йорка до Ленінграда.
Обговорюючи явище поділу ядра урану, Енріко Фермі звернув увагу на те, що нейтрони, які виникають при поділі, можуть спричинити наступні акти поділу, тобто в урані можлива ланцюгова реакція. Але ніхто не бачив вибуху внаслідок опромінення урану нейтронами. Н. Бор припустив, що це пов'язано з тим, що ядра урану бувають двох видів: природний уран містить, в основному, важкий ізотоп (99,28 %), а вміст легкого V235- незначний і становить тільки 0,72 %. Повільні нейтрони спричинюють поділ тільки легкого ізотопу , а важкий ізотоп поглинає швидкі нейтрони, що народжуються в процесі поділу, і ланцюгова реакція обривається.
Відразу ж постало три нових питання: Скільки нейтронів і з якою енергією вилітає з ядра урану-235 при кожному поділі? Що відбувається з ядрами ізотопів ура-ну-238 після захоплення нейтрона? За яких умовах можна здійснити незатухаючу ланцюгову ядерну реакцію в урані?
Відповідь на перше питання було отримано через півтора місяці — у березні 1939 року у Франції (Жоліо-Кюрі), Росії (Флеров і Петржак), США (Фермі і Сцил-лард) показали, що при кожному поділі ядра урану-235 вивільняється 2-3 нейтрони із середньою енергією 13 МеВ. Точна кількість нейтронів поділу (2,42), виміряне згодом, залишалося державною таємницею аж до 1950 року.
Намагаючись знайти відповідь на друге питання, установили, що поділ урану-235 найбільш ефективно відбувається, якщо нейтрони уповільнені до дуже малих енергій — 0,04 еВ (такі енергії мають частинки газу, якщо його температура становить близько 100 °С, і тому такі нейтрони називаються "тепловими"). Найбільш ефективно уран-238 захоплює нейтрони, якщо їх енергія становить 6,8 еВ; при цьому уран-238, поглинаючи нейтрон і вивільняючи електрон (Р-розпад), перетворюється на трансурановий елемент непту ній-239.
Таким чином, щоб стала можливою ланцюгова реакція, необхідний сповільнювач нейтронів, який повинен, по-перше, зменшити їх енергію в 10 мільйонів разів — від 1 МеВ, з яким вони вивільняються в процесі поділу ядра урану-235, до енергії 0,1 еВ, і, по-друге, здійснити це так швидко, щоб нейтрони встигли сповільнитися до того, як зіштовхнуться з ядром урану-238. Нарешті, сам сповільнювач не повинен поглинати нейтрони.
Вибір матеріалу для сповільнювача виявився небагатим: вуглець або важка вода D20, тобто вода, у якій водень замінений його важким ізотопом дейтерієм. Важка вода найкраще відповідає вимогам, але її важко добувати: у літрі звичайної води міститься тільки 0,15 г важкої. Із двох можливостей Жоліо-Кюрі (Франція) і Гейзенберг (Німеччина) вибрали важку воду, а Фермі (США) і Курчатов (СРСР) зупинилися на графіті.
Спосіб зниження втрат нейтронів при їх захопленні ураном-238 реалізується в гетерогенному реакторі. Суть ідеї проста й полягає в тому, що замість того, щоб перемішувати рівномірно уран і сповільнювач, потрібно розмістити блоки урану в просторі на деякій відстані один від одного, на зразок атомів у кристалічній решітці, а потім заповнити цей об'єм сповільнювачем. У цьому випадку нейтрони поділу, вилітаючи з блоків урану з енергією 1,3 МеВ, велику частину шляху будуть проходити в сповільнювачі і на той час, коли вони досягнуть іншого блоку урану, уже проминуть небезпечну область енергій (у радянській урановій програмі це явище було названо "блок-ефектом").
Шлях до створення ядерного реактора було відкрито.
- Розділ 1. Природознавство, наука, науковий метод, пізнання і його структура
- 1.1 Що таке природознавство. Види природничих наук, предмет та мета вивчення. Класифікація методів наукового пізнання
- 1.2 Загальнонаукові методи емпіричного пізнання
- 1.2.1 Спостереження
- 1.2.2 Експеримент
- 1.2.3 Вимірювання
- 1.3 Загальнонаукові методи теоретичного пізнання
- 1.3.1 Абстрагування. Сходження від абстрактного до конкретного
- 1.3.2 Ідеалізація. Уявний експеримент
- 1.3.3 Формалізація. Мова науки
- 1.3.4 Індукція та дедукція
- 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання
- 1.4.1 Аналіз і синтез
- 1.4.2 Аналогія та моделювання
- Розділ 2. Зародження, становлення й і розвиток природознавства
- 2.1 Зародження й розвиток наукових знань у стародавньому світі
- 2.1.1 Нагромадження раціональних знань у первісну епоху (від неандертальця до homo sapiens)
- 2.1.1.1 Повсякденне, стихійно-емпіричне знання
- 2.1.1.2 Зародження рахунку
- 2.1.1.3 Астрономічні знання та календар
- 2.1.2 Міфологія
- 2.2 Становлення цивілізації
- 2.2.1 Історичні передумови виникнення цивілізації
- 2.2.2 Неолітична революція
- 2.2.2.1 Основні передумови
- 2.2.2.2 Перехід від привласнюючої економіки до відтворюючої (продуктивної")
- 2.2.3 Металургія
- 2.2.4 Розвиток гірничої справи та видобування корисних копалин
- 2.2.5 Розвиток домашніх промислів і становлення ремесла
- 2.2.6 Еволюція суспільної свідомості. Раціональні знання
- 2.2.6.1 Астрономія та календар
- 2.2.6.2 Математичні знання
- 2.2.6.3 Біологія та медицина
- 2.2.6.4 Географія та картографія
- 2.2.7 Виникнення та становлення обміну
- 2.2.8 Поділ праці
- 2.2.9 Розвиток духовної культури
- 2.2.10 Становлення писемності
- 2.2.10.1 Вихідні відомості
- 2.2.10.2 Розвиток піктографії
- 2.3 Географія та основні характеристики цивілізацій стародавнього сходу
- 2.3.1 Давньоєгипетські держави
- 2.3.2 Держави Межиріччя
- 2.3.3 Мала Азія
- 2.3.4 Східне Середземномор'я
- 2.3.5 Середня Азія та Іран
- 2.3.6 Перші держави в Індії
- 2.3.7 Стародавній Китай
- 2.3.8 Культура давньосхідних цивілізацій
- 2.3.9 Від міфу до науки
- 2.3.10 Астрономічні знання стародавнього Єгипту й Межиріччя
- 2.3.11 Вавилонська математика та її застосування у фізиці
- .4 Давні цивілізації Європи
- 2.4.1 Мінойська цивілізація
- 2.4.2 Ахейська (мікенська) цивілізація
- 2.4.3 Греція "гомерівського" періоду
- 2.5 Філософія і наука античного світу
- 2.5.1 Формування й розвиток античної цивілізації
- 2.5.2 Від "дитячості" Гомера до атомістики Демокріта
- 2.5.2.1 Філософія та поезія Гомера
- 2.5.2.2 Мислителі мілетської школи
- 2.5.2.3 Загальна характеристика піфагоризму
- 2.5.2.4 Філософське вчення елеатів
- 2.5.2.5 Античний атомізм
- 2.5.2.6 Учення Арістотеля
- 2.5.2.7 Александрійська наукова школа
- 2.5.2.8 Геоцентрична система Птолемея
- 2.5.2.9 Спад у розвитку античної науки
- 2.6 Наука середніх віків
- 2.6.1 Основна характеристика епохи середньовіччя
- 2.6.2 Наука на середньовічному сході
- 2.6.3 Наука в середньовічній Європі
- 2.6.4 Висновок
- 2.7 Природознавство в епоху Відродження
- 2.7.1 Основна характеристика епохи Відродження
- 2.7.2 Філософія епохи відродження
- 2.7.3 Кінематична статика
- 2.7.3.1 Леонардо да Вінчі
- 2.7.3.2 Тарталья і Кардано
- 2.7.4 Геометрична статика
- 2.7.4.1 Убальдо дель Монте
- 2.7.4.2 Джованні Баттиста Бенедетті
- 2.7.4.3 Сімон Стевін
- 2.7.5 Кінематика
- 2.7.5.1 Основні передумови геліоцентризму
- 2.7.5.2 М. Коперник і його геліоцентрична система світу
- 2.7.5.3 Нова космологія
- 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму
- 2.7.7 Відкриття законів руху планет
- 2.7.7.1 Життя, присвячене служінню Урани
- 2.7.7.2 Йоганн Кеплер
- 2.8 Виникнення класичної механіки
- 2.8.1 Механіка г. Галілея
- 2.8.2 Картезіанська фізика
- 2.8.2.1 Декартівська концепція вихорів
- 2.8.2.2 Учення про речовину й теплоту
- 2.8.2.3 Космогонія
- 2.8.3 Ньютонівська революція
- 2.8.3.1 Ньютон і його час
- 2.8.3.2 "Математичні начала натуральної філософії" і їх структура
- 2.8.3.3 Закон всесвітнього тяжіння
- 2.8.3.4 Математичне узагальнення
- 2.8.3.5 Ньютонівська оптика
- 2.8.3.6 Атомістичні погляди Ньютона
- 2.8.3.7 Учення Ньютона про ефір
- .8.3.8 Ньютонівська Ідея дальньої дії
- 2.8.3.9 Простір, час, рух
- 2.9 Від геометричного методу до аналітичної механіки
- 2.9.1 Принцип найменшої дії
- 2.9.2 Принцип Даламбера
- 2.9.3 Аналітична механіка матеріальної точки й динаміка твердого тіла Ейлера
- 2.9.4 Аналітична механіка системи матеріальних точок і тіл Лагранжа
- 2.9.5 Розвиток аналітичної механіки
- 2.9.5.1 Принцип Гамільтона
- 2.9.5.2 К. Г. Якобі
- 2.9.5.3 М. В. Остроградський
- 2.9.5.4 Немеханічне трактування принципу найменшої дії Гельмгольца
- 2.9.5.5 Принцип найменшого примусу Гаусса
- 2.9.5.6 "Механіка без сили" Герца
- 2.10 Виникнення й розвиток електродинаміки
- 2.10.1Перетворення електрики на магнетизм
- 2.10.2 Перетворення магнетизму на електрику
- 2.10.3 Ідея поля
- 2.10.3.1 Фізичне поле Фарадея
- 2.10.3.2 Дві основи теорії поля
- 2.10.4 Теорія електромагнітного поля Максвелла
- 2.10.4.1 Основні передумови
- 2.10.4.2 Струм зміщення
- 2.10.4.3 Реальність поля
- 2.10.4.4 Поле та ефір
- 2.11 Основні досягнення природознавства XIX століття
- Розділ з. Сучасна фізична картина світу
- 3.1 Простір і час
- 3.1.1 Загальні зауваження
- 3.1.2 Основні концепції простору й часу
- 3.1.3 Поняття простору й часу у філософії і природознавстві xvi11 -XIX століть
- 3.1.4 Розвиток уявлень про простір і час у XX столітті
- 3.2 Теорія відносності
- 3.2.1 Загальні зауваження
- 3.2.2 Абсолютно чи відносно?
- 3.2.3 Експеримент Майкельсона-Морлі
- 3.2.4 Спеціальна теорія відносності (частина і)
- 3.2.5 Спеціальна теорія відносності (частина II)
- 3.2.6 Принцип еквівалентності
- 3.2.7 Загальна теорія відносності
- 3.3 Закон збереження енергії в макроскопічних процесах
- 3.3.1 Робота в механіці, закон збереження та перетворення енергії в механіці
- 3.3.2 Перший закон термодинаміки
- 3.4 Другий закон термодинаміки та принцип зростання ентропії
- 3.4.1 Другий закон термодинаміки
- 3.4.2 Ідеальний цикл Карно
- 3.4.3 Поняття ентропії
- 3.4.4 Ентропія та імовірність
- 3.4.5 Порядок і хаос. Стріла часу
- 3.4.6 Проблема теплової смерті всесвіту. Флуктаційна гіпотеза Больцмана
- 3.4.7 Синергетика. Народження порядку з хаосу
- 3.5 Квантова механіка
- 3.5.1 Гіпотеза про кванти
- 3.5.2 Фотони
- 3.5.3 Планетарний атом
- 3.5.4 Гіпотеза де Бройля. "Хвилі матерії"
- 3.5.5 Співвідношення невизначеностей
- 3.5.6 Хвильова функція. Хвилі імовірності. Образ атома
- 3.5.7 Причинність класична і причинність квантова
- 3.5.8 Принцип додатковості
- 3.6 Світ елементарних частинок
- 3.6.1 Фундаментальні фізичні взаємодії
- 3.6.1.1 Гравітація
- 3.6.1.2 Електромагнетизм
- 3.6.1.3 Слабка взаємодія
- 3.6.1.4 Сильна взаємодія
- 3.6.1.5 Проблеми єдності фізики
- 3.6.2 Класифікація елементарних частинок
- 3.6.2.1 Характеристики субатомних частинок
- 3.6.2.2 Лептони
- 3.6.2.3 Адрони
- 3.6.2.4 Частинки — носії взаємодій
- 3.6.3 Теорії елементарних частинок
- 3.6.3.1 Квантова електродинаміка
- 3.6.3.2 Теорія кварків
- 3.6.3.3 Теорія електрослабкої взаємодії
- 3.6.3.4 Квантова хромодинаміка
- 3.6.3.5 На шляху до великого об'єднання
- 3.7 Проблеми енергетики (ядерні і термоядерні реактори)
- 3.7.1. Поділ ядер урану
- 3.7.2 Ядерні реактори
- 3.7.3 Світові енергетичні ресурси та необхідність вирішення проблеми керованого термоядерного синтезу
- Розділ 4. Сучасна астрофізика та космологія
- 4.1 Еволюція всесвіту
- 4.1.1 Класична космологія
- 4.1.2 Парадокси Шезо-Ольберса і Зеєлігера
- 4.1.3 Неевклідові геометрії
- 4.1.4 Космологічний принцип
- 4.1.5 Всесвіт Ейнштейна
- 4.1.6 Всесвіт Фрідмана
- 4.1.7 Закон Хаббла й дослідження Слайфера
- 4.1.8 Моделі Всесвіту
- 4.1.9 Модель гарячого Всесвіту. Реліктове випромінювання
- 4.1.10 Інфляційна модель
- 4.1.11 Народження Всесвіту
- 4.1.12 Варіанти майбутнього Всесвіту
- 4.1.13 Деякі труднощі гіпотези розширного Всесвіту
- 4.1.14 Проблема позаземних цивілізацій
- 4.2 Галактика і квазари
- 4.2.1 Сонце та Галактика
- 4.2.2 Метагалактика
- 4.2.3 Класифікація галактик
- 4.2.4 Обертання галактик
- 4.2.5 Походження галактик
- 4.2.6 Гіпотези про походження галактик
- 4.2.7 Квазари. Відкриття квазарів
- 4.2.8 Особливості квазарів
- 4.2.9 Розподіл квазарів у просторі
- 4.2.10 Гіпотези про походження квазарів
- 4.3 Народження та еволюція зірок
- 4.3.1 Діаграма Герцшпрунга-Рассела
- 4.3.2 Еволюція зірок
- 4.3.3 Білі карлики
- 4.3.4 Пульсари та нейтронні зірки
- 4.3.5 Чорні дірки
- 4.3.6 Змінні зірки. Цефеїди
- 4.3.7 Зоряні скупчення та асоціації
- 4.3.8 Туманності
- 4.3.9 Пояс зодіаку
- 4.4 Сонячна система
- 4.4.1 Сонце
- 4.4.2 Джерела енергії Сонця
- 4.4.3 Як утворилося сімейство планет
- 4.4.4 Планети
- 4.4.5 Малі планети
- 4.4.6 Комети, метеори й метеорити
- Розділ 5. Сучасна біологічна картина світу
- 5.1 Життя як особлива форма руху матерії
- 5.1.1 Концепції сутності життя
- 5.1.2 Аксіоми біології
- 5.1.3 Основні властивості та ознаки живих організмів
- 5.1.4 Структурні рівні організації життя
- 5.2 Теорія еволюції
- 5.2.1 Еволюційні ідеї, концепції та гіпотези в додарвінівський період
- 5.2.2 Теорія еволюції ч. Дарвіна
- 5.2.3 Подальший розвиток теорії еволюції. Дарвінізм XX століття
- 5.2.4 Пристосованість до середовища існування (адаптація)
- 5.2.5 Різноманітність живої природи
- 5.2.6 Головні напрямки еволюції
- 5.2.7 Необоротність та необмеженість процесу еволюції
- 5.3 Розвиток життя на землі
- 5.3.1 Гіпотези виникнення життя
- 5.3.2 Походження життя
- 5.3.3 Хронологія еволюції живої природи за даними палеонтології
- 5.4 Походження людини
- 5.4.1 Історія питання
- 5.4.2 Місце людини в системі тваринного світу. Докази тваринного походження людини
- 5.4.3 Якісна своєрідність людини як біосоціальної істоти
- 5.4.4 Дані палеонтології та антропології про походження людини
- Розділ 6. Учення про біосферу та ноосферу
- 6.1 Біосфера
- 6.1.1 Виникнення вчення про біосферу
- 6.1.1.1 Етапи життя та наукової творчості в. І. Вернадського
- 6.1.1.2 Концепції в. І. Вернадського про біосферу
- 6.1.2 Утворення планетної системи
- 6.1.3 Основні характеристики Землі
- 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя
- 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу
- 6.1.6 Абіогенез
- 6.1.6.1 Виникнення пробіонтів і біологічних мембран
- 6.1.7 Основні етапи еволюції живої природи
- 6.1.8 Основні характеристики біосфери
- 6.1.9 Виникнення атмосфери та гідросфери
- 6.1.10 Основні характеристики атмосфери
- 6.1.10.1 Озон та аерозолі
- 6.1.10.2 Роль вуглекислого газу
- 6.1.10.3 Вплив атмосфери на радіаційний баланс Землі
- 6.1.11 Гідросфера
- 6.1.12 Взаємодія океану та атмосфери
- 6.1.13 Вологообіг
- 6.1.14 Жива речовина
- 6.1.15 Кругообіг вуглецю
- 6.2 Ноосфера
- 6.2.1 Розвиток і становлення людини
- 6.2.2 Виникнення вчення про ноосферу
- 6.2.2.1 Основні положення вчення про ноосферу е. Леруа і Тайяра де Шардена.
- 6.2.2.2 Концепція ноосфери в. І. Вернадського
- 6.2.3 Перехід біосфери в ноосферу
- 6.2.4 Умови, необхідні для становлення та існування ноосфери
- 6.2.5 Наука як основний чинник ноосфери
- 6.2.6 Проблеми становлення ноосфери