§2. Инверсии геомагнитного поля
Объяснение инверсий геомагнитного поля самопроизвольным обращением практически не оставляет места для экспериментальной проверки такого механизма. Поэтому дальнейшее развитие гипотезы сильно затянулось.
Рис. 33. К определению времени выравнивания угловых скоростей вращающихся сфер Земли
Предположим, что выравнивание угловых скоростей ядра и оболочки (1 = 2) с последующим обменом моментами вращения может вызвать перемену знака поля. При этом общее прямое направление вращения планеты сохраняется. В современную эпоху внутреннее субъядро вращается быстрее оболочки. Судя по западному дрейфу, эта скорость составляет один оборот за 2 тыс. лет. Если учесть большую вязкость вещества жидкого ядра и малую скорость проворачивания оболочки, то можно предположить здесь наличие огромных инерционных сил, практически исключающих свободное течение жидкости ядра, т. е. жидкость увлекается неровными границами вращающихся сфер, образуя в условиях существенно ламинарного течения минимальное число ячей конвекции. В данном случае их может образоваться не более двух. Отсюда дрейф геомагнитного поля отражает, по существу, прохождение сферической оболочки над магнитными силовыми линиями различной плотности (и конфигурации). Коль скоро происходит такое проворачивание сфер, то вследствие вязкого трения будет происходить постепенное торможение более быстро вращающейся внешней оболочки относительно внутренней, что в итоге приведет к кратковременному стационарному состоянию системы. Сферы станут вращаться с одинаковой угловой скоростью. В результате конвекция будет затухать, а «накрученные» витки тороидального поля (рис. 32) – распадаться. Это приведет к диффузии магнитного поля и, как следствие, – уменьшению дипольной составляющей. Следовательно, в момент выравнивания скоростей напряженность магнитного поля Земли резко уменьшится, а оставшаяся часть будет обусловлена величиной напряженности остаточного распадающегося поля и поля намагниченности верхних 30 – 60 км перисферы.
В дальнейшем при увеличении вращения оболочки относительно ядра вновь образуется конвекция, но уже с восточным дрейфом недипольной составляющей. Перестройка конвекции должна происходить очень быстро, так как отсутствует свободное течение вязкого вещества внешнего ядра. Едва наметившееся изменение направления движения сфер увлекает в том же направлении «жидкость». Математическое доказательство этого процесса весьма сложно и к тому же не решает всех проблем. Однако если удастся обнаружить восточный дрейф поля на Марсе и Юпитере, имеющих обратный по сравнению с Землей знак полярности современного поля, то предложенный механизм инверсий можно будет считать доказанным.
Имеются и прямые доказательства существования подобного механизма инверсий. Речь идет о палеомагнитных изменениях напряженности геомагнитного поля в момент инверсий, или, иными словами, о резком уменьшении интенсивности намагниченности пород в момент инверсии и постепенном возрастании ее после обращения. Смена знака происходит быстро – в интервале 10 тыс. лет. Продолжительность существования поля одного знака различна – от нескольких миллионов и даже десятков миллионов до нескольких десятков тысяч лет. Исходя из этих данных оценим время, необходимое для выравнивания скоростей вращения субъядра и оболочки. Будем исходить из условия вязкого взаимодействия без учета магнитных сил.
Пусть тангенциальная сила на единицу площади движения сферы в вязкой жидкости определяется выражением:
, (VI.5)
где v = 1 – 2, – вязкость внешнего ядра, – угол. Причем 1, 2 – линейные скорости оболочки и ядра, соответственно 1 = 1r, а 2 = 2R.
Если 1 2, то кинетическая энергия ядра (Е) расходуется на работу (А) по преодолению сил вязкости, возникающих при вращении его в жидкой среде, причем E = A; I – момент инерции шара, равный , .
Работа по преодолению сил вязкости А = FL, где L – путь, который пройдет точка на поверхности ядра до момента, когда линейные скорости ядра и оболочки будут равны; F – сила, действующая на ядро по касательной (тангенциальная составляющая). Учитывая, что dF = dSґ (Sґ – поверхность шара), находим F:
. (VI.6)
Если a = R – r, = 1r – 2R; dSґ = 2rr cosr cosd, тогда
. (VI.7)
Подставляя (VI.7) в (VI.6), получим:
(VI.8)
В выражении А = FL будет выполняться условие 1r = 2R. В этом случае сила вязкости трения между двумя сферами будет равна нулю. Найдем
, (VI.9)
где – время, в течение которого происходит выравнивание скоростей сфер. Из уравнения кинетической энергии вращения ядра определим:
(VI.10)
Подставим известные значения соответствующих величин в формулу (VI.10): m = 3,6·1024 кг; r = 1,21·106 м; = 12,510-3 кг/м3; 1 = = 1,5·10-2 м/с; 2 = 10-2 м/с; = 105 нс/м2; R – r = 2,26106 м; 1 = = 1,25·10‑8 рад/с. Тогда 1014 c 107 лет. Таким образом, кинетическая энергия вращения гасит конвекцию в ядре за 10 млн. лет. Полученная величина расходится со средним значением за последние 107 лет на два порядка ( = 1012с). Следовательно, гашение конвекции происходит не только вязким торможением сфер, но и магнитным силовым полем, на долю которого, как следует из полученного значения, приходится меньшая часть работы (где-то около второго порядка ). Из приведенных оценок следует, что предложенный механизм инверсий в принципе осуществим. Движение в целом неустойчиво и стабилизируется лишь на короткий период при выравнивании скоростей.
Можно отметить, что приливное трение тормозит в основном верхнюю оболочку: на ядро это торможение передается через вязкую жидкость. Поэтому при уменьшении приливного взаимодействия системы Земля – Луна больший период времени оболочка будет отставать от ядра и при этом станет преобладать поле положительных инверсий. Возможно, этим объясняется преобладание прямой полярности геомагнитного поля второй половины фанерозоя, начиная с верхней перми, что связано с прогрессирующим удалением Луны. В первой половине фанерозоя периоды преобладающих прямой и обратной полярности были примерно одинаковы.
Определим современную плотность силовых линий магнитного поля во внешнем ядре Земли исходя из его напряженности, регистрируемой на ее поверхности.
Число витков N определяется из соотношения:
. (VI.11)
Подставив в него Ам-1, I = 106A, R = 6,4·106 м, получим N 103
Рис. 34. Палеомагнитная геохронологическая шкала для последних 4,5 млн. лет (по Ф. Стейси)
Таким образом, если регистрируемые скорости дрейфа сохранялись в среднем, то современное магнитное поле Земли (считая от последней инверсии) имеет «возраст» около 2 млн. лет. Как известно, начало эпохи Брюнеса датируется в 0,7 млн. лет (рис. 34), а если включить сюда эпизод Джарамильо, то 0,95 млн. лет. Исходя из средней периодичности инверсий в 1 млн. лет можно предположить, что мы находимся на пороге очередной инверсии геомагнитного поля. Этот вывод хорошо согласуется с быстрым уменьшением магнитного момента диполя, о чем говорилось выше. Если темпы его уменьшения сохранятся на уровне 0,05 % в год, то через один оборот оболочки (через 2 тыс. лет) Земля войдет в интервал переполюсовки, т.е. будет иметь очень слабый магнитный экран (около 20% от современного). Как это отразится на человечестве? Первобытные люди пережили уже одну такую инверсию 0,7 млн. лет назад – в эпоху Брюнеса. Из вышесказанного становится ясно, что минимально возможный интервал существования поля одного знака приближается к 1 млн. лет. Вязкомеханический эффект сцепления и торможения оболочки вследствие большой инерционности системы ядро-оболочка не может «работать» быстрее. Поэтому выделение эпох инверсий длительностью менее 0,7 – 1,0 млн. лет неубедительно. Это скорее всего локальные особенности намагниченности пород, не имеющие отношения к полю диполя. Сходная картина уже наблюдалась при выделении фаз складчатости и попытках распространения местных тектонических подвижек в общепланетарный ранг.
Если вещество внешнего ядра обладает сверхпроводимостью, то «приклеенные» к нему магнитные силовые линии должны выталкиваться к поверхности ядра. Следовательно, средняя плотность силовых линий составляет примерно одну линию на каждые 9 км ядерного меридиана. Вероятно, такой же характерный порядок имеют поперечные размеры силовых линий. Поэтому они могут оказывать существенное влияние на распространение упругих волн. Из физики плазмы известно, что ток, циркулирующий вокруг магнитных силовых линий, сжимает их, т.е. магнитные силовые линии превращаются в своего рода упругие натянутые шнуры со сжатым внутри них веществом. Такие шнуры в направлении их простирания абсолютно несжимаемы. Поэтому они должны вести себя подобно своеобразной поляризованной жидкости. Поскольку Р-волны представляют собой движение частиц среды по направлению движения, а S-волны – перпендикулярное направление движения, прохождение последних через внешнее ядро будет затруднено. Поляризация колеблющихся частиц среды будет совпадать с направлением абсолютного сжатия жгутов магнитных силовых линий, опоясывающих поверхность внешнего ядра, и вследствие равенства нулю значительная часть энергии S-волн будет гаситься на этой границе или полностью отражаться обратно в мантию. Иными словами, для S-волн граница внешнего ядра будет являться абсолютно отражающей (коэффициент отражения для S-волн близок единице).
Распространение же P-волн сопровождается изгибом силовых линий поля, поэтому последние для них не являются преградой.
Предлагаемая модель для объяснения феномена с S-волнами как будто разрешает противоречие между данными о ненулевом во внешнем ядре, существованием вязкой конвекции и непрохождением S-волн через него.
- В. В. Орленок основы геофизики Калининград
- Вячеслав Владимирович Орлёнок основы геофизики Учебное пособие
- 236041, Г. Калининград, ул. А. Невского, 14
- 236000, Г. Калининград, ул. К. Маркса, 18
- Введение
- Часть I
- Глава I. Строение солнечной системы
- §1. Планеты и законы их обращения
- §2. Орбитальные характеристики планет
- Орбитальные параметры спутников планет
- §3. Солнце. Основные характеристики
- §4. Движение Солнца по эклиптике
- Глава II. Внутреннее строение и физика земли
- §1. Планетарные характеристики
- §2. Модель Буллена
- Положение границ, скорости распространения и затухания сейсмических волн внутри Земли
- §3. Физическое состояние вещества геосфер
- Строение мантии и ядра Земли (по Мельхиору, 1975)
- Физические параметры земных оболочек (по Буллену, Хаддону, 1967)
- Плотность в зависимости от давления в атм. Для космохимических элементов и соединений, г/см3
- Значения термодинамических величин оболочек в земном ядре при распределении температур (по Жаркову, 1978)
- §4. Строение газовой оболочки
- Глава III. Состав и эволюция вещества геосфер
- §1. Происхождение и эволюция земных оболочек
- Баланс тепла на Земле (по Орлёнку, 1980)
- Внутреннее строение Земли (по Гутенбергу-Буллену, 1966)
- §2. История планетарной воды
- Круговорот воды на поверхности Земли
- Структура и баланс протовещества Земли (Орлёнок, 1985)
- §3. Контракция и тектогенез перисферы
- §4. Важнейшие тектонические следствия контракции
- Часть II
- Глава IV. Гравитационное поле земли
- §1. Закон всемирного тяготения
- §2. Фигура Земли
- §3. Потенциал силы тяжести
- §4. Аномалии силы тяжести
- §5. Принципы изостазии
- Постгляциальные движения Фенноскандии и других областей четвертичных оледенений
- § 6. Гравитационное взаимодействие системы Земля – Луна
- Приливы
- Эволюция системы Земля – Луна
- Изменение продолжительности года и суток в фанерозое (по п. Мельхиору, 1975)
- Глава V. Гравитационные аномалии реальных геологических тел
- §1. Физические основы интерпретации
- Гравитационных аномалий
- Плотности наиболее распространенных пород
- §2. Гравитационное поле точечной массы и шара
- §3. Гравитационное поле вертикального стержня
- §4. Гравитационное поле горизонтальной полуплоскости
- § 5. Гравитационное поле плоского слоя
- § 6. Обратные задачи гравиметрии
- Глава VI. Магнитное поле земли
- §1. Генерация геомагнитного поля
- §2. Инверсии геомагнитного поля
- §3. Хронология инверсий
- §4. Элементы земного магнетизма
- §5. Магнитные аномалии
- §6. Магнитное поле диполя
- §7. Недипольные составляющие магнитного поля.
- §8. Магнитные свойства горных пород
- §9. Основные формулы палеомагнитных реконструкций
- §10. Расчет виртуальных полюсов для современной эпохи
- §11. Критика палеомагнитных реконструкций неомобилизма
- Глава VII. Магнитные аномалии реальных геологических сред
- §1. Магнитное поле вертикального стержня
- § 2. Магнитное поле шара
- §3. Магнитное поле вертикального тонкого пласта
- §4. Магнитное поле вертикального толстого пласта
- §5. Магнитное поле горизонтального цилиндра
- §6. Магнитное поле уступа
- §7. Интерпретация магнитных аномалий
- Коэффициенты для определения глубины и намагниченности возмущающих тел способом в. К. Пятницкого
- §8. Связь гравитационного и магнитного потенциалов
- §9. Трансформации потенциальных полей
- Глава VIII. Основы волновой теории распространения сейсмических колебаний
- §1. Деформации и напряжения в горных породах. Закон Гука
- §2. Волновое уравнение
- §3. Акустическое давление и колебательная скорость плоской волны
- §4. Акустическое давление и колебательная скорость сферической волны
- §5. Отражение волн на границе вода – дно
- §6. Отражение звука от слоя
- §7. Дистанционно-акустические методы определения физических свойств и литологии морских осадков
- Глава IX. Основы лучевой теории распространения сейсмических волн
- §1. Условия применимости лучевого приближения
- §2. Годограф отраженной волны
- §3. Годограф преломленной волны
- Годограф преломленной волны для многослойной среды
- Определение граничной скорости
- §4. Годограф рефрагированной волны
- Глава X. Структура земной коры по геофизическим данным
- §1. Петромагнитная структура фундамента
- Континентов и океанов
- Рифтовые хребты
- Нерифтовые (глыбовые) остаточные возвышенности
- Континентальные окраины
- Глубоководные котловины
- Гренландское море, Зюйдкапский желоб
- Балтийская синеклиза
- §2. Плотностная структура коры по гравиметрическим данным
- §3. Сейсмическая структура коры континентов и океанов
- Критический анализ сейсмических данных
- Обобщенные сейсмические модели твердой земной коры океанов
- Обобщение сейсмической модели верхней литосферы Тихого океана
- Сейсмическая модель перисферы
- Часть III
- Глава XI. Внутреннее строение и физика планет земной группы
- §1. Меркурий
- §2. Венера
- §3. Луна
- §4. Марс
- Глава XII. Внутреннее строение и физика планет-гигантов
- §1. Юпитер
- Галилеевы спутники Юпитера
- §2. Сатурн
- §3. Уран
- §4. Нептун
- Глава XIII. Роль массы в эволюции протовещества
- §1. Планетный тип эволюции протовещества
- Радиусы твердого тела планет и мощности их атмосфер (по Кесареву, 1976)
- §2. Звездный (солнечный) тип эволюции протовещества
- Глава XIV. Строение и эволюция звезд
- §1. Физика Солнца
- §2. Диаграмма Герцшпрунга-Рессела
- §3. Эволюция Солнца и звезд
- Ядерные процессы в звездах, существенные для ядерного синтеза
- Глава XV. Ранняя история солнечной системы
- §1. Структура небулярного облака и межзвездной среды
- §2. Вихревая теория образования Солнечной системы
- §3. Аккреция Земли и планет
- Глава XVI. Географическая оболочка в пространстве и времени
- §1. Планетарный аспект эволюции географической оболочки
- §2. Проблема времени и пространства в Метагалактике
- Уравнение времени
- Мировое время и Мировое пространство
- Зависимость времени от энтропии и энтальпии систем
- Масштаб времени биосистем
- Масштаб времени социальных систем
- О сингулярном времени и предельном возрасте Галактики
- Заключение
- Послесловие
- Библиографический список
- Оглавление
- Для заметок
- Физические характеристики планет
- Значения коэффициентов разложения Гаусса для различных эпох, мэ (по Рикитаки, 1968)
- Магнитное поле под подводными горами Гренландского моря
- Интерпретация магнитного поля (т) Балтийского моря