§1. Деформации и напряжения в горных породах. Закон Гука
Горные породы, слагающие земную кору, являются продуктами дезинтеграции и переотложения преимущественно магматических пород, вынесенных на поверхность вулканизмом. Наряду с неизмененными магмами низы земной коры состоят преимущественно из метаморфических пород. Верхнюю часть разреза повсеместно, кроме докембрийских щитов, слагают осадочные породы различной мощности и происхождения. Средняя толщина земной коры составляет около 33 км. Под подошвой коры залегает малоизмененное первичное планетное вещество мантии – так называемое протовещество.
Породы, слагающие земную кору, и вещество глубоких недр планеты обладают различными упругими свойствами, обусловленными их различным петрографическим составом и термодинамическими условиями залегания. Под упругими свойствами понимается сопротивление среды изменению объема и формы пород под действием внешней силы.
Деформация породы происходит вследствие смещения атомов, молекул или ионов узлов кристаллической решетки вещества (жидкого, твердого или газообразного) от положения их равновесия. Внутренние силы взаимодействия между указанными компонентами вещества препятствуют этой деформации и стремятся вернуть смещенные атомы, молекулы или ионы в положение равновесия. В результате этого в породе возникают колебания частиц. Эти колебания распространяются на соседние объемы пород и таким образом происходит образование и распространение упругих колебаний (сейсмических волн) во все стороны от приложенной силы. В качестве таковой может выступать землетрясение, ядерные или обычные (тротиловые) взрывы и тому подобное. Способность пород передавать на большие расстояния с определенной скоростью упругие деформации определяет основы сейсмометрии земной коры и глубоких недр планеты, недоступных прямым наблюдениям.
Рассмотрим воздействие внешних сил на горную породу. Обозначим через напряжение, т.е. поверхностную плотность силы, возникающую в некотором элементарном объеме тела.
В твердой, лишенной пор породе напряжение определяется выражением:
= F/S, (VIII.1)
где S – площадь, на которую воздействует сила F. В обычной пористой породе площадь S состоит из площади контакта S0 минеральных зерен и Sп – площади пор:
S = S0 + Sп. (VIII.2)
В поровом пространстве напряжений нет, т.е. напряжение возникает только на контактах минеральных зерен:
= F/S0. (VIII.3)
Поскольку S0 S, то с увеличением пористости напряжение возрастает.
Под воздействием внешних сил F горная порода испытывает изменение объема, линейных размеров и формы. Все эти изменения называются деформацией.
Возникновение той или иной деформации зависит от величины внешней нагрузки или характера внутренних связей между частицами породы. Если тело испытывает продольное напряжение (сжатие или растяжение), например, вдоль одной оси x:
x = F/x,
то ему соответствует относительная деформация x. Тогда
x = F/x, или x = Ex. (VIII.4)
Это закон Гука, согласно которому малым напряжениям в среде соответствуют малые деформации, или гармонические колебания. В дифференциальной форме закон Гука будет иметь вид:
x = E(U/x). (VIII.5)
Здесь Е – модуль упругости (модуль Юнга). В сейсмике он представляет собой физическую константу среды:
E = c2, (VIII.6)
где – плотность, г/см3, с – скорость упругих волн м/с. Величина , когда под влиянием внешней силы x частицы среды сближаются, т.е. происходит сжатие среды. При частицы среды отходят друг от друга и возникает растяжение.
Поскольку величина x представляет собой давление Р, то закон Гука позволяет рассчитать акустическое давление в любой точке среды.
Рис. 56. Деформации объема среды при движении P-волн (а); деформации сдвига при движении S-волн (б)
Если деформация вызывает касательное напряжение (см. рис. 56), то она определяется углом сдвига или деформацией сдвига , где , или :
. (VIII.7)
Здесь G – модуль сдвига. Это закон Гука для сдвиговых деформаций, или деформаций формы.
Закон Гука в своей линейной части (см. рис. 57) характеризует область упругой деформации, происходящей в малом отрезке времени (доли секунды). Однако упругое тело Гука в геологическом масштабе времени (тысячи, миллионы лет) может вести себя как пластичное тело, т.е. подчиняться нелинейным законам Максвелла. Такую среду называют телом Максвелла. В общем случае деформация в твердых породах слагается из упругой f1() и пластичной f2(,t), т.е.:
U = f1() + f2(,t). (VIII.8)
Рис. 57. К иллюстрации закона Гука: ОА – область упругой деформации; АВ –область пластичной деформации
Модуль Юнга Е и модуль сдвига G являются основными упругими характеристиками среды. Их размерность – кг/см2 или н/м2 (СИ). Для оценки отношения между продольными (U/U) и поперечными (d/d) деформациями вводится коэффициент Пуассона (безразмерная величина):
. (VIII.9)
Весьма важно отметить, что через модуль Юнга и модуль сдвига можно определить скорость распространения упругих волн – объемных, называемых продольными волнами ср – и сдвиговых волн, называемых поперечными волнами – сs:
(м/с); (м/с), (VIII.10)
где – плотность среды.
Существует весьма важное соотношение скорости продольных волн к скорости поперечных – ср/сs, которое является, по существу, функцией коэффициента Пуассона:
. (VIII.11)
Для осадочных пород, вследствие низкого сопротивления сдвигу рыхлых отложений, величина ср/сs может достигать больших значений:
ср/сs = 1,4 14 и более.
Для кристаллических магматических и метаморфических пород это соотношение лежит в более узких пределах:
ср/сs = 1,7 1,9.
Из приведенного видно, что скорость упругих волн в породах зависит главным образом от их плотности и практически не зависит от частоты колебаний. Последняя оказывает сильное влияние на поглощение волн.
- В. В. Орленок основы геофизики Калининград
- Вячеслав Владимирович Орлёнок основы геофизики Учебное пособие
- 236041, Г. Калининград, ул. А. Невского, 14
- 236000, Г. Калининград, ул. К. Маркса, 18
- Введение
- Часть I
- Глава I. Строение солнечной системы
- §1. Планеты и законы их обращения
- §2. Орбитальные характеристики планет
- Орбитальные параметры спутников планет
- §3. Солнце. Основные характеристики
- §4. Движение Солнца по эклиптике
- Глава II. Внутреннее строение и физика земли
- §1. Планетарные характеристики
- §2. Модель Буллена
- Положение границ, скорости распространения и затухания сейсмических волн внутри Земли
- §3. Физическое состояние вещества геосфер
- Строение мантии и ядра Земли (по Мельхиору, 1975)
- Физические параметры земных оболочек (по Буллену, Хаддону, 1967)
- Плотность в зависимости от давления в атм. Для космохимических элементов и соединений, г/см3
- Значения термодинамических величин оболочек в земном ядре при распределении температур (по Жаркову, 1978)
- §4. Строение газовой оболочки
- Глава III. Состав и эволюция вещества геосфер
- §1. Происхождение и эволюция земных оболочек
- Баланс тепла на Земле (по Орлёнку, 1980)
- Внутреннее строение Земли (по Гутенбергу-Буллену, 1966)
- §2. История планетарной воды
- Круговорот воды на поверхности Земли
- Структура и баланс протовещества Земли (Орлёнок, 1985)
- §3. Контракция и тектогенез перисферы
- §4. Важнейшие тектонические следствия контракции
- Часть II
- Глава IV. Гравитационное поле земли
- §1. Закон всемирного тяготения
- §2. Фигура Земли
- §3. Потенциал силы тяжести
- §4. Аномалии силы тяжести
- §5. Принципы изостазии
- Постгляциальные движения Фенноскандии и других областей четвертичных оледенений
- § 6. Гравитационное взаимодействие системы Земля – Луна
- Приливы
- Эволюция системы Земля – Луна
- Изменение продолжительности года и суток в фанерозое (по п. Мельхиору, 1975)
- Глава V. Гравитационные аномалии реальных геологических тел
- §1. Физические основы интерпретации
- Гравитационных аномалий
- Плотности наиболее распространенных пород
- §2. Гравитационное поле точечной массы и шара
- §3. Гравитационное поле вертикального стержня
- §4. Гравитационное поле горизонтальной полуплоскости
- § 5. Гравитационное поле плоского слоя
- § 6. Обратные задачи гравиметрии
- Глава VI. Магнитное поле земли
- §1. Генерация геомагнитного поля
- §2. Инверсии геомагнитного поля
- §3. Хронология инверсий
- §4. Элементы земного магнетизма
- §5. Магнитные аномалии
- §6. Магнитное поле диполя
- §7. Недипольные составляющие магнитного поля.
- §8. Магнитные свойства горных пород
- §9. Основные формулы палеомагнитных реконструкций
- §10. Расчет виртуальных полюсов для современной эпохи
- §11. Критика палеомагнитных реконструкций неомобилизма
- Глава VII. Магнитные аномалии реальных геологических сред
- §1. Магнитное поле вертикального стержня
- § 2. Магнитное поле шара
- §3. Магнитное поле вертикального тонкого пласта
- §4. Магнитное поле вертикального толстого пласта
- §5. Магнитное поле горизонтального цилиндра
- §6. Магнитное поле уступа
- §7. Интерпретация магнитных аномалий
- Коэффициенты для определения глубины и намагниченности возмущающих тел способом в. К. Пятницкого
- §8. Связь гравитационного и магнитного потенциалов
- §9. Трансформации потенциальных полей
- Глава VIII. Основы волновой теории распространения сейсмических колебаний
- §1. Деформации и напряжения в горных породах. Закон Гука
- §2. Волновое уравнение
- §3. Акустическое давление и колебательная скорость плоской волны
- §4. Акустическое давление и колебательная скорость сферической волны
- §5. Отражение волн на границе вода – дно
- §6. Отражение звука от слоя
- §7. Дистанционно-акустические методы определения физических свойств и литологии морских осадков
- Глава IX. Основы лучевой теории распространения сейсмических волн
- §1. Условия применимости лучевого приближения
- §2. Годограф отраженной волны
- §3. Годограф преломленной волны
- Годограф преломленной волны для многослойной среды
- Определение граничной скорости
- §4. Годограф рефрагированной волны
- Глава X. Структура земной коры по геофизическим данным
- §1. Петромагнитная структура фундамента
- Континентов и океанов
- Рифтовые хребты
- Нерифтовые (глыбовые) остаточные возвышенности
- Континентальные окраины
- Глубоководные котловины
- Гренландское море, Зюйдкапский желоб
- Балтийская синеклиза
- §2. Плотностная структура коры по гравиметрическим данным
- §3. Сейсмическая структура коры континентов и океанов
- Критический анализ сейсмических данных
- Обобщенные сейсмические модели твердой земной коры океанов
- Обобщение сейсмической модели верхней литосферы Тихого океана
- Сейсмическая модель перисферы
- Часть III
- Глава XI. Внутреннее строение и физика планет земной группы
- §1. Меркурий
- §2. Венера
- §3. Луна
- §4. Марс
- Глава XII. Внутреннее строение и физика планет-гигантов
- §1. Юпитер
- Галилеевы спутники Юпитера
- §2. Сатурн
- §3. Уран
- §4. Нептун
- Глава XIII. Роль массы в эволюции протовещества
- §1. Планетный тип эволюции протовещества
- Радиусы твердого тела планет и мощности их атмосфер (по Кесареву, 1976)
- §2. Звездный (солнечный) тип эволюции протовещества
- Глава XIV. Строение и эволюция звезд
- §1. Физика Солнца
- §2. Диаграмма Герцшпрунга-Рессела
- §3. Эволюция Солнца и звезд
- Ядерные процессы в звездах, существенные для ядерного синтеза
- Глава XV. Ранняя история солнечной системы
- §1. Структура небулярного облака и межзвездной среды
- §2. Вихревая теория образования Солнечной системы
- §3. Аккреция Земли и планет
- Глава XVI. Географическая оболочка в пространстве и времени
- §1. Планетарный аспект эволюции географической оболочки
- §2. Проблема времени и пространства в Метагалактике
- Уравнение времени
- Мировое время и Мировое пространство
- Зависимость времени от энтропии и энтальпии систем
- Масштаб времени биосистем
- Масштаб времени социальных систем
- О сингулярном времени и предельном возрасте Галактики
- Заключение
- Послесловие
- Библиографический список
- Оглавление
- Для заметок
- Физические характеристики планет
- Значения коэффициентов разложения Гаусса для различных эпох, мэ (по Рикитаки, 1968)
- Магнитное поле под подводными горами Гренландского моря
- Интерпретация магнитного поля (т) Балтийского моря