§1. Юпитер
Мы переходим к обзору строения планет-гигантов, масса которых во много раз превосходит массу геологически самой активной планеты – Земли. В науке и учебной литературе давно утвердилось представление о газообразном, преимущественно водородном, составе этих планет. Такой состав, по мнению многих исследователей, был предопределен распределением температуры в первичном пылегазовом облаке. В горячих внутренних областях конденсировались тугоплавкие элементы и силикаты, а летучие компоненты – газы и вода – выгорали. Однако уже на расстоянии 500 млн. км от центра облака температура падала, и вместе с частичками пыли в конденсации участвовали замерзшие газы водорода, метана, гелия, воды, аммиака. Таким образом, атмосфера из водорода и гелия планет-гигантов, по существующим представлениям, сложилась в ходе аккреции тела планет, т.е. изначально. Для эволюции, как видим, места не остается.
Рассматривая физику планет-гигантов, мы попытаемся обосновать иной взгляд на строение и природу их оболочек, отличный от только что изложенного.
Юпитер – самая большая планета в Солнечной системе (рис. 99). Его масса 1,9×1030 г, т.е. лишь на два порядка меньше массы Солнца. Теоретически для становления на звездный путь эволюции планете не хватило всего 10 масс. На наше счастье, этого не случилось, иначе в Солнечной системе возникло бы два солнца, в пламени которых земная жизнь могла бы не состояться. Впрочем, расстояние до Юпитера больше, чем до Солнца, и он со своими 16 спутниками мог бы образовать вторую «Солнечную» систему.
Рис. 99. Юпитер, наблюдаемый «Пионером-10». Фотография получена с расстояния 2,5 млн. км от планеты. Явно видны Большое Красное Пятно и тень Ио (НАСА)
Юпитер обладает мощной атмосферой и сильным магнитным полем – порядка 400000 нТ по экватору, что находится в полном соответствии с его гигантской массой. Магнитный момент равен 1,51012 Ам2. Состав атмосферы изучен только по ее верхней кромке. Он включает 77% водорода, около 23% гелия, небольшие примеси метана, аммиака, а также следы воды, СО, молекулы фосфина (РН3), германа (GеН4), дейтерия (D). Предполагается (Хаббард, 1987), что отмеченные примеси были вынесены конвективными потоками с нижних горизонтов атмосферы, где эти газы находятся в состоянии термодинамического равновесия. Это говорит о том, что на самом деле атмосфера Юпитера имеет более сложный многокомпонентный состав. Если же из преимущественно водородно-гелиевого состава верхней кромки юпитерианской атмосферы выводить и состав тела планеты, то, поступая аналогичным образом, мы получили бы водородное строение Земли. В самом деле, как мы знаем, гравитационное расслоение земной атмосферы происходит с высоты 300 км. Выше этого уровня и до высоты 20000 км атмосфера сложена исключительно поднявшимися молекулами и ионами водорода (протонами).
Судя по приведенным данным, верхние и достаточно мощные слои атмосферы Юпитера действительно сложены гравитационно расслоенным водородом и гелием. Толщина атмосферы, вероятно, достигает нескольких тысяч километров. Поэтому низы водородно-гелиевого слоя, находясь в области высоких давлений, сильно нагреты. Охлаждение же их происходит конвективным перемешиванием, этот процесс и был успешно сфотографирован «Вояджером». В ходе этого перемешивания захватываются вулканические дымы, к каковым следует относить обнаруженные примеси в водородно-гелиевой части атмосферы. Эти дымы занимают следующий, более низкий уровень юпитерианской атмосферы.
Состав ее газов аналогичен глубинным газам Земли, а имеющаяся разница обусловлена тем, что земная атмосфера при наличии океана и мощного солнечного излучения проэволюционировала значительно дольше юпитерианской.
Огромная масса Юпитера создает уникальные термодинамические условия в обширном объеме недр этой планеты – мощное жидкое ядро и, следовательно, огромную астеносферную зону – источник грандиозного вулканизма. Именно вулканизму невиданного по земным меркам размаха обязан Юпитер своей мощной атмосферой. Поскольку запасы акклюдированных на пылинках железо-силикатного состава газов и воды в зоне формирования Юпитера были значительно больше, чем на орбитах землеподобных планет, то и выработка соответствующей газовой оболочки в ходе начавшейся сразу после аккреции термохимической реакции происходила в грандиозных масштабах. Повторяем, внешний облик Юпитера, впрочем, как и других планет-гигантов, находится в полном соответствии с их гигантской массой. Давление в зоне внешнего ядра достигает 8×107 атм, температура 2,5×104 К (Хаббард, 1987).
По расчетам В.В. Кесарева (1976), твердое тело планеты будет иметь радиус 40420 км, а атмосфера – 29265 км, тогда средняя плотность твердого вещества планеты равна 6,84 г/см3.
Большое Красное Пятно, наблюдаемое в атмосфере Юпитера вот уже более 300 лет и сфотографированное «Вояджером», имеющее ширину 30 – 40 тыс. км – одно из доказательств мощного вулканизма, продолжающегося с неослабевающей энергией и в настоящее время. Периодически появляющиеся пятна меньших размеров свидетельствуют о действии все новых вулканов, которые после извержения затухают.
Температура верхних слоев атмосферы, по измерениям, равна ‑130С. В нижних слоях она может достигать +1000С. На твердой поверхности планеты, сложенной, как и Земля, силикатными породами, должен неизбежно возникнуть парниковый эффект, а температура достигать точек плавления коры. Поэтому выносимая с вулканизмом вода вместе с вулканическими газами поступает в атмосферу, где по мере подъема и охлаждения конденсируется в водяной пар. Свободной воды на планете нет.
В пользу высказанных соображений относительно природы и состава Юпитера свидетельствуют также наблюдения над его спутниками, и особенно галилеевыми – Ио, Европа, Ганимед, Каллисто, параметры которых приведены в табл. XII.1.
Таблица XII.1
- В. В. Орленок основы геофизики Калининград
- Вячеслав Владимирович Орлёнок основы геофизики Учебное пособие
- 236041, Г. Калининград, ул. А. Невского, 14
- 236000, Г. Калининград, ул. К. Маркса, 18
- Введение
- Часть I
- Глава I. Строение солнечной системы
- §1. Планеты и законы их обращения
- §2. Орбитальные характеристики планет
- Орбитальные параметры спутников планет
- §3. Солнце. Основные характеристики
- §4. Движение Солнца по эклиптике
- Глава II. Внутреннее строение и физика земли
- §1. Планетарные характеристики
- §2. Модель Буллена
- Положение границ, скорости распространения и затухания сейсмических волн внутри Земли
- §3. Физическое состояние вещества геосфер
- Строение мантии и ядра Земли (по Мельхиору, 1975)
- Физические параметры земных оболочек (по Буллену, Хаддону, 1967)
- Плотность в зависимости от давления в атм. Для космохимических элементов и соединений, г/см3
- Значения термодинамических величин оболочек в земном ядре при распределении температур (по Жаркову, 1978)
- §4. Строение газовой оболочки
- Глава III. Состав и эволюция вещества геосфер
- §1. Происхождение и эволюция земных оболочек
- Баланс тепла на Земле (по Орлёнку, 1980)
- Внутреннее строение Земли (по Гутенбергу-Буллену, 1966)
- §2. История планетарной воды
- Круговорот воды на поверхности Земли
- Структура и баланс протовещества Земли (Орлёнок, 1985)
- §3. Контракция и тектогенез перисферы
- §4. Важнейшие тектонические следствия контракции
- Часть II
- Глава IV. Гравитационное поле земли
- §1. Закон всемирного тяготения
- §2. Фигура Земли
- §3. Потенциал силы тяжести
- §4. Аномалии силы тяжести
- §5. Принципы изостазии
- Постгляциальные движения Фенноскандии и других областей четвертичных оледенений
- § 6. Гравитационное взаимодействие системы Земля – Луна
- Приливы
- Эволюция системы Земля – Луна
- Изменение продолжительности года и суток в фанерозое (по п. Мельхиору, 1975)
- Глава V. Гравитационные аномалии реальных геологических тел
- §1. Физические основы интерпретации
- Гравитационных аномалий
- Плотности наиболее распространенных пород
- §2. Гравитационное поле точечной массы и шара
- §3. Гравитационное поле вертикального стержня
- §4. Гравитационное поле горизонтальной полуплоскости
- § 5. Гравитационное поле плоского слоя
- § 6. Обратные задачи гравиметрии
- Глава VI. Магнитное поле земли
- §1. Генерация геомагнитного поля
- §2. Инверсии геомагнитного поля
- §3. Хронология инверсий
- §4. Элементы земного магнетизма
- §5. Магнитные аномалии
- §6. Магнитное поле диполя
- §7. Недипольные составляющие магнитного поля.
- §8. Магнитные свойства горных пород
- §9. Основные формулы палеомагнитных реконструкций
- §10. Расчет виртуальных полюсов для современной эпохи
- §11. Критика палеомагнитных реконструкций неомобилизма
- Глава VII. Магнитные аномалии реальных геологических сред
- §1. Магнитное поле вертикального стержня
- § 2. Магнитное поле шара
- §3. Магнитное поле вертикального тонкого пласта
- §4. Магнитное поле вертикального толстого пласта
- §5. Магнитное поле горизонтального цилиндра
- §6. Магнитное поле уступа
- §7. Интерпретация магнитных аномалий
- Коэффициенты для определения глубины и намагниченности возмущающих тел способом в. К. Пятницкого
- §8. Связь гравитационного и магнитного потенциалов
- §9. Трансформации потенциальных полей
- Глава VIII. Основы волновой теории распространения сейсмических колебаний
- §1. Деформации и напряжения в горных породах. Закон Гука
- §2. Волновое уравнение
- §3. Акустическое давление и колебательная скорость плоской волны
- §4. Акустическое давление и колебательная скорость сферической волны
- §5. Отражение волн на границе вода – дно
- §6. Отражение звука от слоя
- §7. Дистанционно-акустические методы определения физических свойств и литологии морских осадков
- Глава IX. Основы лучевой теории распространения сейсмических волн
- §1. Условия применимости лучевого приближения
- §2. Годограф отраженной волны
- §3. Годограф преломленной волны
- Годограф преломленной волны для многослойной среды
- Определение граничной скорости
- §4. Годограф рефрагированной волны
- Глава X. Структура земной коры по геофизическим данным
- §1. Петромагнитная структура фундамента
- Континентов и океанов
- Рифтовые хребты
- Нерифтовые (глыбовые) остаточные возвышенности
- Континентальные окраины
- Глубоководные котловины
- Гренландское море, Зюйдкапский желоб
- Балтийская синеклиза
- §2. Плотностная структура коры по гравиметрическим данным
- §3. Сейсмическая структура коры континентов и океанов
- Критический анализ сейсмических данных
- Обобщенные сейсмические модели твердой земной коры океанов
- Обобщение сейсмической модели верхней литосферы Тихого океана
- Сейсмическая модель перисферы
- Часть III
- Глава XI. Внутреннее строение и физика планет земной группы
- §1. Меркурий
- §2. Венера
- §3. Луна
- §4. Марс
- Глава XII. Внутреннее строение и физика планет-гигантов
- §1. Юпитер
- Галилеевы спутники Юпитера
- §2. Сатурн
- §3. Уран
- §4. Нептун
- Глава XIII. Роль массы в эволюции протовещества
- §1. Планетный тип эволюции протовещества
- Радиусы твердого тела планет и мощности их атмосфер (по Кесареву, 1976)
- §2. Звездный (солнечный) тип эволюции протовещества
- Глава XIV. Строение и эволюция звезд
- §1. Физика Солнца
- §2. Диаграмма Герцшпрунга-Рессела
- §3. Эволюция Солнца и звезд
- Ядерные процессы в звездах, существенные для ядерного синтеза
- Глава XV. Ранняя история солнечной системы
- §1. Структура небулярного облака и межзвездной среды
- §2. Вихревая теория образования Солнечной системы
- §3. Аккреция Земли и планет
- Глава XVI. Географическая оболочка в пространстве и времени
- §1. Планетарный аспект эволюции географической оболочки
- §2. Проблема времени и пространства в Метагалактике
- Уравнение времени
- Мировое время и Мировое пространство
- Зависимость времени от энтропии и энтальпии систем
- Масштаб времени биосистем
- Масштаб времени социальных систем
- О сингулярном времени и предельном возрасте Галактики
- Заключение
- Послесловие
- Библиографический список
- Оглавление
- Для заметок
- Физические характеристики планет
- Значения коэффициентов разложения Гаусса для различных эпох, мэ (по Рикитаки, 1968)
- Магнитное поле под подводными горами Гренландского моря
- Интерпретация магнитного поля (т) Балтийского моря