§6. Отражение звука от слоя
Рассмотрим задачу об отражении плоской волны от однородного слоя толщиной h, падающей под горизонтальным углом i на верхнюю и нижнюю границу слоя (рис. 61). Будем полагать, что среды 1 и 3, разделяемые слоем h, также являются однородными, т.е. распределение скорости и плотности в них по z и по x постоянны. Решение задачи впервые было изложено в работе Л. М. Бреховских (1957). Им мы и воспользуемся.
Рис. 61. Отражение звука от тонкого слоя
При прохождении волны через слой происходит интерференция (сложение) колебаний от верхней и нижней границ слоя. Поэтому для результирующего акустического поля в слое h можно написать следующее выражение:
. (VIII.68)
Ранее было показано, что отношение акустического давления к колебательной скорости при нормальном падении плоской волны на границу раздела двух сред характеризует волновое сопротивление (импеданс) среды (c). При произвольном падении
. (VIII.69)
Здесь мы обозначим акустический импеданс буквой , чтобы не путать с координатой z.
При смене направления распространения волны cos меняет знак и
. (VIII.70)
В соответствии с этим будем считать, что среды 1, 2, 3 (рис. 61) характеризуются импедансом:
, где j=1, 2, 3... (VIII.71)
Найдем акустическое давление и колебательную скорость, создаваемые результирующим полем U2 в слое h (Бреховских, 1957):
(VIII.72)
В соответствии с формулой (VIII.69) отношение на границе z=0 должно равняться импедансу среды 1, т.е.
, (VIII.73)
откуда
, или . (VIII.74)
На верхней границе слоя, т.е. при z = h, из выражений (VIII.72) имеем:
, (VIII.75)
Подставляя в (VIII.75) значение из (VIII.74) после простых преобразований с учетом формулы Эйлера:
, (VIII.76)
получим:
. (VIII.77)
Здесь через вх мы обозначим входной импеданс на верхней границе слоя. Теперь найдем звуковое поле в среде 3. Соответствующие выражения для давления и колебательной скорости имеют вид:
(VIII.78)
При z=h отношение должно быть равно входному импедансу слоя 3, т.е.
. (VIII.79)
Следовательно, коэффициент отражения на верхней границе будет равен:
. (VIII.80)
Подставляя сюда выражение (VIII.77), для вх получим:
. (VIII.81)
Это и есть выражение для коэффициента отражения от слоя толщиной h.
Определим теперь амплитуду прошедшей через слой h волны. Поле этой волны в среде 1 будет:
. (VIII.82)
Согласно условиям непрерывности смещений, давлений и скорости на границе раздела z=0, смещение U1 должно быть равно смещению U2, определенному выражением (VIII.68):
. (VIII.83)
Полагая z=0 и учитывая закон Снеллиуса , получаем:
. (VIII.84)
Аналогично из условий непрерывности U на границе z=h, согласно выражениям (VIII.68) и (VIII.78), получаем:
или, с учетом ,
. (VIII.85)
Разделим (VIII.84) на (VIII.85) и в полученное выражение подставим значения R12 и :
. (VIII.86)
Полученная формула характеризует коэффициент прозрачности слоя.
Проанализируем теперь полученные выражения для R32 и W. Если слой имеет нулевую мощность (h = 0), то формулы (VIII.81) и (VIII.86) переходят в обычные выражения для коэффициента отражения и преломления от границы полупространства:
; (VIII.87)
. (VIII.88)
Полагая
(VIII.89)
и подставляя их в формулы (VIII.81) и (VIII.86), получим обобщенные выражения для коэффициента отражения и прозрачности слоя h:
, (VIII.90)
. (VIII.91)
Если волна падает вертикально на поверхность слоя, что соответствует случаю глубокого моря, то, полагая в формуле (VIII.81) cos2 = 1 и заменив экспоненциальные множители согласно формуле Эйлера , после простых преобразований получим:
. (VIII.92)
Разделив R на действительные и мнимые члены, получим для квадратного модуля , где a=Re(R), b=Im(R); окончательно получим выражение для коэффициента отражения от слоя при нормальном падении волны:
. (VIII.93)
Наличие в выражении для функции sin2k2h свидетельствует, что модуль коэффициента отражения от слоя есть периодическая функция. Максимумы и минимумы осцилляции легко находятся обычным путем:
, (VIII.94)
что имеет место при sin2k2h=0, т.е. если k2h=n, откуда ; (n=0,1,2...);
, (VIII.95)
что имеет место при sin2k2h=1, т.е. если , откуда . Таким образом, если 3 < 2 < 1, то R23R12 > 0 и коэффициент отражения имеет максимум при отражении от слоя, толщина которого h кратна целому числу полуволн, и минимум, если толщина слоя кратна нечетному числу четверти длины волны. В первом случае
; (VIII.96)
во втором
. (VIII.97)
Из последнего выражения видно, что если R23=R12, то отражение от слоя будет отсутствовать совсем. Подставляя в это равенство выражение для импедансов сред:
,
получим
. (VIII.98)
Таким образом, если между двумя любыми средами поместить четвертьволновой слой с импедансом, равным среднему геометрическому импедансу этих сред, то отражение от слоя будет отсутствовать совсем.
Можно показать, что коэффициент отражения от слоя с поглощением представляет собой по-прежнему осциллирующую функцию. Однако размах осцилляции уменьшается с увеличением мощности слоя h, и при больших h величина становится постоянной величиной, равной модулю коэффициента отражения от верхней границы слоя. Это значит, что в толстом слое с поглощением волны затухают, не доходя до нижней границы слоя и, следовательно, не образуют интерференцию с отраженной от этой границы волной.
Период осцилляции тот же, что и в слое без поглощения, с той лишь разницей, что амплитуда осцилляции затухает с увеличением мощности слоя. Следует отметить, что аналогичный эффект поглощения в слое обеспечивается умножением модуля R на экспоненту, учитывающую фактор поглощения :
. (VIII.99)
Исследование поведения коэффициентов отражения в функции h или частоты в слоях позволяет определить важнейшие характеристики среды – такие, как скорость звука и поглощение в глубоководных осадочных слоях, что было найдено нами (Орлёнок, 1977; см. §7).
- В. В. Орленок основы геофизики Калининград
- Вячеслав Владимирович Орлёнок основы геофизики Учебное пособие
- 236041, Г. Калининград, ул. А. Невского, 14
- 236000, Г. Калининград, ул. К. Маркса, 18
- Введение
- Часть I
- Глава I. Строение солнечной системы
- §1. Планеты и законы их обращения
- §2. Орбитальные характеристики планет
- Орбитальные параметры спутников планет
- §3. Солнце. Основные характеристики
- §4. Движение Солнца по эклиптике
- Глава II. Внутреннее строение и физика земли
- §1. Планетарные характеристики
- §2. Модель Буллена
- Положение границ, скорости распространения и затухания сейсмических волн внутри Земли
- §3. Физическое состояние вещества геосфер
- Строение мантии и ядра Земли (по Мельхиору, 1975)
- Физические параметры земных оболочек (по Буллену, Хаддону, 1967)
- Плотность в зависимости от давления в атм. Для космохимических элементов и соединений, г/см3
- Значения термодинамических величин оболочек в земном ядре при распределении температур (по Жаркову, 1978)
- §4. Строение газовой оболочки
- Глава III. Состав и эволюция вещества геосфер
- §1. Происхождение и эволюция земных оболочек
- Баланс тепла на Земле (по Орлёнку, 1980)
- Внутреннее строение Земли (по Гутенбергу-Буллену, 1966)
- §2. История планетарной воды
- Круговорот воды на поверхности Земли
- Структура и баланс протовещества Земли (Орлёнок, 1985)
- §3. Контракция и тектогенез перисферы
- §4. Важнейшие тектонические следствия контракции
- Часть II
- Глава IV. Гравитационное поле земли
- §1. Закон всемирного тяготения
- §2. Фигура Земли
- §3. Потенциал силы тяжести
- §4. Аномалии силы тяжести
- §5. Принципы изостазии
- Постгляциальные движения Фенноскандии и других областей четвертичных оледенений
- § 6. Гравитационное взаимодействие системы Земля – Луна
- Приливы
- Эволюция системы Земля – Луна
- Изменение продолжительности года и суток в фанерозое (по п. Мельхиору, 1975)
- Глава V. Гравитационные аномалии реальных геологических тел
- §1. Физические основы интерпретации
- Гравитационных аномалий
- Плотности наиболее распространенных пород
- §2. Гравитационное поле точечной массы и шара
- §3. Гравитационное поле вертикального стержня
- §4. Гравитационное поле горизонтальной полуплоскости
- § 5. Гравитационное поле плоского слоя
- § 6. Обратные задачи гравиметрии
- Глава VI. Магнитное поле земли
- §1. Генерация геомагнитного поля
- §2. Инверсии геомагнитного поля
- §3. Хронология инверсий
- §4. Элементы земного магнетизма
- §5. Магнитные аномалии
- §6. Магнитное поле диполя
- §7. Недипольные составляющие магнитного поля.
- §8. Магнитные свойства горных пород
- §9. Основные формулы палеомагнитных реконструкций
- §10. Расчет виртуальных полюсов для современной эпохи
- §11. Критика палеомагнитных реконструкций неомобилизма
- Глава VII. Магнитные аномалии реальных геологических сред
- §1. Магнитное поле вертикального стержня
- § 2. Магнитное поле шара
- §3. Магнитное поле вертикального тонкого пласта
- §4. Магнитное поле вертикального толстого пласта
- §5. Магнитное поле горизонтального цилиндра
- §6. Магнитное поле уступа
- §7. Интерпретация магнитных аномалий
- Коэффициенты для определения глубины и намагниченности возмущающих тел способом в. К. Пятницкого
- §8. Связь гравитационного и магнитного потенциалов
- §9. Трансформации потенциальных полей
- Глава VIII. Основы волновой теории распространения сейсмических колебаний
- §1. Деформации и напряжения в горных породах. Закон Гука
- §2. Волновое уравнение
- §3. Акустическое давление и колебательная скорость плоской волны
- §4. Акустическое давление и колебательная скорость сферической волны
- §5. Отражение волн на границе вода – дно
- §6. Отражение звука от слоя
- §7. Дистанционно-акустические методы определения физических свойств и литологии морских осадков
- Глава IX. Основы лучевой теории распространения сейсмических волн
- §1. Условия применимости лучевого приближения
- §2. Годограф отраженной волны
- §3. Годограф преломленной волны
- Годограф преломленной волны для многослойной среды
- Определение граничной скорости
- §4. Годограф рефрагированной волны
- Глава X. Структура земной коры по геофизическим данным
- §1. Петромагнитная структура фундамента
- Континентов и океанов
- Рифтовые хребты
- Нерифтовые (глыбовые) остаточные возвышенности
- Континентальные окраины
- Глубоководные котловины
- Гренландское море, Зюйдкапский желоб
- Балтийская синеклиза
- §2. Плотностная структура коры по гравиметрическим данным
- §3. Сейсмическая структура коры континентов и океанов
- Критический анализ сейсмических данных
- Обобщенные сейсмические модели твердой земной коры океанов
- Обобщение сейсмической модели верхней литосферы Тихого океана
- Сейсмическая модель перисферы
- Часть III
- Глава XI. Внутреннее строение и физика планет земной группы
- §1. Меркурий
- §2. Венера
- §3. Луна
- §4. Марс
- Глава XII. Внутреннее строение и физика планет-гигантов
- §1. Юпитер
- Галилеевы спутники Юпитера
- §2. Сатурн
- §3. Уран
- §4. Нептун
- Глава XIII. Роль массы в эволюции протовещества
- §1. Планетный тип эволюции протовещества
- Радиусы твердого тела планет и мощности их атмосфер (по Кесареву, 1976)
- §2. Звездный (солнечный) тип эволюции протовещества
- Глава XIV. Строение и эволюция звезд
- §1. Физика Солнца
- §2. Диаграмма Герцшпрунга-Рессела
- §3. Эволюция Солнца и звезд
- Ядерные процессы в звездах, существенные для ядерного синтеза
- Глава XV. Ранняя история солнечной системы
- §1. Структура небулярного облака и межзвездной среды
- §2. Вихревая теория образования Солнечной системы
- §3. Аккреция Земли и планет
- Глава XVI. Географическая оболочка в пространстве и времени
- §1. Планетарный аспект эволюции географической оболочки
- §2. Проблема времени и пространства в Метагалактике
- Уравнение времени
- Мировое время и Мировое пространство
- Зависимость времени от энтропии и энтальпии систем
- Масштаб времени биосистем
- Масштаб времени социальных систем
- О сингулярном времени и предельном возрасте Галактики
- Заключение
- Послесловие
- Библиографический список
- Оглавление
- Для заметок
- Физические характеристики планет
- Значения коэффициентов разложения Гаусса для различных эпох, мэ (по Рикитаки, 1968)
- Магнитное поле под подводными горами Гренландского моря
- Интерпретация магнитного поля (т) Балтийского моря