§2. Сатурн
Это вторая по своим размерам и массе после Юпитера планета в Солнечной системе. Ее масса – 5,68×1029 г, радиус – 60400 км (с атмосферой), радиус твердого тела планеты (Кесарев, 1976) – 20765 км. Средняя плотность, рассчитываемая по видимому радиусу, имеет неправдоподобно низкое значение – 0,7 г/см3, без атмосферы – 5,85 г/см3. Толщина атмосферного слоя несколько выше, чем у Юпитера, – 37000 км.
Рис. 100. Сатурн. На этой фотографии, полученной с земли, видны слабые намеки на полосы и зоны. В строении колец четко заметно деление Кассини (НАСА)
Магнитное поле Сатурна почти в два раза меньше по напряженности земного – 21000 нТ на экваторе. Однако ось диполя почти точно совпадает с осью вращения планеты. Магнитный момент равен 4,61025 Ам2. Столь небольшое для планеты-гиганта поле является загадкой. Одно из объяснений этому феномену мы видим в том, что поле в настоящее время находится в состоянии инверсии. В этом случае его напряженность, как известно, падает до 20% номинального значения. Однако даже в случае принятия этой гипотезы полное поле Сатурна будет лишь ненамного больше земного. Но вопрос осложняется тем, что и у Урана магнитное поле тоже незначительное, хотя и немного больше, чем у Сатурна (25000 нТ на магнитном экваторе). Напомним, что у Земли напряженность поля на экваторе равна 31000 нТ.
Полярность поля Сатурна (как и Урана) противоположна полярности Земли. Говорить о редуцировании магнитоактивных зон внешних ядер этих планет не приходится – обе они, судя по их мощным атмосферам и массам, пребывают в максимуме геологической и внутренней активности. Можно выдвинуть еще одно предположение в рамках, конечно, концепции не водородного, а силикатного состава твердых тел планет – о значительном уменьшении напряженности солнечного полоидального поля на столь больших гелиоцентрических расстояниях. В результате эффективность работы магнитного гидродинамо со слабым внешним полем будет падать. Образно говоря, если бы на орбите Земли происходила накрутка каната, то на орбитах Сатурна, Урана, Нептуна накручивалась бы паутина. Это обусловлено эффектом геометрического расхождения, при котором по мере удаления от источника происходит расширение сечения трубок магнитных силовых линий и уменьшение напряженности, приходящейся на единицу сечения трубки.
Решение проблемы слабых магнитных полей планет-гигантов за орбитой Юпитера приблизит нас к решению проблемы их внутреннего строения.
До 1980 г. у Сатурна было известно 10 спутников. После пролета в 1980 г. «Вояджера» было открыто еще 7.
Самый далекий их них – Феба (диаметр 300 км) – находится в 13 млн. км от планеты и обращается вокруг нее за 550 дней. Самый близкий – Мимас (диаметр 400 км) – находится на расстоянии 185400 км и делает полный оборот за 22,6 часа. Этот спутник вращается внутри колец Сатурна, влияя на их движение, причем движется он в обратном направлении – навстречу вращению планеты. На самом большом спутнике Сатурна – Титане – обнаружена достаточно плотная атмосфера, а поверхность покрыта льдом, что свидетельствует о его былой геологической активности. Ледяные поверхности наблюдаются и на других крупных спутниках – Рея (диаметр 1500 км), Диона (диаметр 800 км), Тефия (диаметр 1000 км). Лед может быть водного состава, а также метанового и аммиачного. Последние газы, вероятнее всего, конденсационного происхождения, водный – эндогенного.
Поверхность Мимаса разбита гигантским кратером диаметром 130 км (при общем диаметре спутника 400 км). По средней плотности и внешнему виду поверхности все спутники Сатурна так же, как и Юпитера, имеют силикатный состав. Это еще раз подтверждает рассмотренные выше соображения об аналогичном составе и материнской планеты.
- В. В. Орленок основы геофизики Калининград
- Вячеслав Владимирович Орлёнок основы геофизики Учебное пособие
- 236041, Г. Калининград, ул. А. Невского, 14
- 236000, Г. Калининград, ул. К. Маркса, 18
- Введение
- Часть I
- Глава I. Строение солнечной системы
- §1. Планеты и законы их обращения
- §2. Орбитальные характеристики планет
- Орбитальные параметры спутников планет
- §3. Солнце. Основные характеристики
- §4. Движение Солнца по эклиптике
- Глава II. Внутреннее строение и физика земли
- §1. Планетарные характеристики
- §2. Модель Буллена
- Положение границ, скорости распространения и затухания сейсмических волн внутри Земли
- §3. Физическое состояние вещества геосфер
- Строение мантии и ядра Земли (по Мельхиору, 1975)
- Физические параметры земных оболочек (по Буллену, Хаддону, 1967)
- Плотность в зависимости от давления в атм. Для космохимических элементов и соединений, г/см3
- Значения термодинамических величин оболочек в земном ядре при распределении температур (по Жаркову, 1978)
- §4. Строение газовой оболочки
- Глава III. Состав и эволюция вещества геосфер
- §1. Происхождение и эволюция земных оболочек
- Баланс тепла на Земле (по Орлёнку, 1980)
- Внутреннее строение Земли (по Гутенбергу-Буллену, 1966)
- §2. История планетарной воды
- Круговорот воды на поверхности Земли
- Структура и баланс протовещества Земли (Орлёнок, 1985)
- §3. Контракция и тектогенез перисферы
- §4. Важнейшие тектонические следствия контракции
- Часть II
- Глава IV. Гравитационное поле земли
- §1. Закон всемирного тяготения
- §2. Фигура Земли
- §3. Потенциал силы тяжести
- §4. Аномалии силы тяжести
- §5. Принципы изостазии
- Постгляциальные движения Фенноскандии и других областей четвертичных оледенений
- § 6. Гравитационное взаимодействие системы Земля – Луна
- Приливы
- Эволюция системы Земля – Луна
- Изменение продолжительности года и суток в фанерозое (по п. Мельхиору, 1975)
- Глава V. Гравитационные аномалии реальных геологических тел
- §1. Физические основы интерпретации
- Гравитационных аномалий
- Плотности наиболее распространенных пород
- §2. Гравитационное поле точечной массы и шара
- §3. Гравитационное поле вертикального стержня
- §4. Гравитационное поле горизонтальной полуплоскости
- § 5. Гравитационное поле плоского слоя
- § 6. Обратные задачи гравиметрии
- Глава VI. Магнитное поле земли
- §1. Генерация геомагнитного поля
- §2. Инверсии геомагнитного поля
- §3. Хронология инверсий
- §4. Элементы земного магнетизма
- §5. Магнитные аномалии
- §6. Магнитное поле диполя
- §7. Недипольные составляющие магнитного поля.
- §8. Магнитные свойства горных пород
- §9. Основные формулы палеомагнитных реконструкций
- §10. Расчет виртуальных полюсов для современной эпохи
- §11. Критика палеомагнитных реконструкций неомобилизма
- Глава VII. Магнитные аномалии реальных геологических сред
- §1. Магнитное поле вертикального стержня
- § 2. Магнитное поле шара
- §3. Магнитное поле вертикального тонкого пласта
- §4. Магнитное поле вертикального толстого пласта
- §5. Магнитное поле горизонтального цилиндра
- §6. Магнитное поле уступа
- §7. Интерпретация магнитных аномалий
- Коэффициенты для определения глубины и намагниченности возмущающих тел способом в. К. Пятницкого
- §8. Связь гравитационного и магнитного потенциалов
- §9. Трансформации потенциальных полей
- Глава VIII. Основы волновой теории распространения сейсмических колебаний
- §1. Деформации и напряжения в горных породах. Закон Гука
- §2. Волновое уравнение
- §3. Акустическое давление и колебательная скорость плоской волны
- §4. Акустическое давление и колебательная скорость сферической волны
- §5. Отражение волн на границе вода – дно
- §6. Отражение звука от слоя
- §7. Дистанционно-акустические методы определения физических свойств и литологии морских осадков
- Глава IX. Основы лучевой теории распространения сейсмических волн
- §1. Условия применимости лучевого приближения
- §2. Годограф отраженной волны
- §3. Годограф преломленной волны
- Годограф преломленной волны для многослойной среды
- Определение граничной скорости
- §4. Годограф рефрагированной волны
- Глава X. Структура земной коры по геофизическим данным
- §1. Петромагнитная структура фундамента
- Континентов и океанов
- Рифтовые хребты
- Нерифтовые (глыбовые) остаточные возвышенности
- Континентальные окраины
- Глубоководные котловины
- Гренландское море, Зюйдкапский желоб
- Балтийская синеклиза
- §2. Плотностная структура коры по гравиметрическим данным
- §3. Сейсмическая структура коры континентов и океанов
- Критический анализ сейсмических данных
- Обобщенные сейсмические модели твердой земной коры океанов
- Обобщение сейсмической модели верхней литосферы Тихого океана
- Сейсмическая модель перисферы
- Часть III
- Глава XI. Внутреннее строение и физика планет земной группы
- §1. Меркурий
- §2. Венера
- §3. Луна
- §4. Марс
- Глава XII. Внутреннее строение и физика планет-гигантов
- §1. Юпитер
- Галилеевы спутники Юпитера
- §2. Сатурн
- §3. Уран
- §4. Нептун
- Глава XIII. Роль массы в эволюции протовещества
- §1. Планетный тип эволюции протовещества
- Радиусы твердого тела планет и мощности их атмосфер (по Кесареву, 1976)
- §2. Звездный (солнечный) тип эволюции протовещества
- Глава XIV. Строение и эволюция звезд
- §1. Физика Солнца
- §2. Диаграмма Герцшпрунга-Рессела
- §3. Эволюция Солнца и звезд
- Ядерные процессы в звездах, существенные для ядерного синтеза
- Глава XV. Ранняя история солнечной системы
- §1. Структура небулярного облака и межзвездной среды
- §2. Вихревая теория образования Солнечной системы
- §3. Аккреция Земли и планет
- Глава XVI. Географическая оболочка в пространстве и времени
- §1. Планетарный аспект эволюции географической оболочки
- §2. Проблема времени и пространства в Метагалактике
- Уравнение времени
- Мировое время и Мировое пространство
- Зависимость времени от энтропии и энтальпии систем
- Масштаб времени биосистем
- Масштаб времени социальных систем
- О сингулярном времени и предельном возрасте Галактики
- Заключение
- Послесловие
- Библиографический список
- Оглавление
- Для заметок
- Физические характеристики планет
- Значения коэффициентов разложения Гаусса для различных эпох, мэ (по Рикитаки, 1968)
- Магнитное поле под подводными горами Гренландского моря
- Интерпретация магнитного поля (т) Балтийского моря