2. Шестое начало от, или закон увлечения (второй симметрии).
Уравнения (172) и (173) определяют количественную сторону взаимного влияния различных потоков. Из этих уравнений видно, что для процессов переноса характерно симметричное увлечение одних веществ другими. Симметричный характер взаимного увлечения потоков составляет содержание закона увлечения, или шестого начала ОТ.
Согласно закону увлечения, данная, например первая, термодинамическая сила влияет на любой другой, например второй, поток в количественном отношении точно так же, как вторая термодинамическая сила влияет на первый поток. Этому закону подчиняется любое явление, находящееся на простом и более сложных уровнях развития.
Симметричное увлечение потоками друг друга неизбежно должно сказаться на симметричном характере первоначального формирования структуры системы. Поэтому по аналогии с четвертым началом ОТ (закон симметрии структуры первого порядка) закон увлечения можно назвать также вторым законом симметрии структуры первого порядка.
В настоящее время нет надобности экспериментально подтверждать справедливость шестого начала, ибо это известный закон, впервые сформулированный Онзагером и достаточно хорошо обоснованный в термодинамике необратимых процессов. Новые толкования и обобщения, содержащиеся в ОТ, логически вытекают из всего предыдущего и поэтому тоже не нуждаются в дополнительных подтверждениях.
Соотношения увлечения (172) и (173), найденные для явлений переноса, напоминают соотношение взаимности (86), определяющее состояние системы. Это говорит о сходстве законов, которыми руководствуются переносимые ансамбли и ансамбли, находящиеся в системе. А это, в свою очередь, должно свидетельствовать о том, что указанные два типа ансамблей по необходимости имеют много общего.
При этом, однако, нельзя забывать, что равенство (86), а также (172) и (173) получены в различных условиях: первые - путем дифференцирования интенсиалов по экстенсорам при постоянных прочих экстенсорах, а вторые - путем дифференцирования экстенсоров по интенсиалам при постоянных прочих интенсиалах. Иными словами, соотношение (86) утверждает факт равенства между собой перекрестных структур при постоянных экстенсорах, а соотношения (172) и (173) - факт равенства перекрестных проводимостей (емкостей)» при постоянных интенсиалах. Отсюда должно следовать, что между ансамблями, проходящими через систему, и ансамблями, усвоенными системой, имеются также и весьма существенные различия.
Проблема установления конкретных специфических особенностей переносимых и усвоенных, подвижных и неподвижных ансамблей имеет исключительно важное теоретическое и практическое значение. Она может быть успешно разрешена на основе детального сопоставления таких категорий, как состояние и изменение состояния (перенос), которые определяются соответственно третьим и пятым, четвертым и шестым началами ОТ. Поэтому необходимо продолжить анализ указанных начал, особый упор сделав на их сравнение. На этой основе будут получены многие новые весьма интересные результаты.
Из уравнения (121) видно, что коэффициент увлечения L12 характеризует влияние второй силы Y2 на первый поток J1 , а коэффициент L21 - влияние первой силы Υ1 на второй поток J2 . При этом величина L12 численно равна изменению первого потока при изменении второй силы на единицу, а величина L21 - изменению второго потока при изменении первой силы на единицу, то есть
L12 = (J1/Y2)Y1 ; L21 = (J2/Y1)Y2 (174)
Согласно равенствам (173), эти изменения первого и второго потоков между собой равны. Например, в проводнике единичный градиент температуры приводит к возникновению такого же по величине потока электричества, какой поток, термического вещества возникает под действием единичного градиента электрического потенциала.
С помощью выражений (174) соответствующее соотношение увлечения (173) можно представить следующим образом:
J1Y1 = J2Y2 (175)
Это уравнение утверждает факт равенства произведений сопряженных между собой потока и силы.
Соотношения (173) можно также переписать по-другому, если принять во внимание уравнения (171) и (172). Находим
Р1Е1 = Р2Е2 (176)
Здесь левая и правая части определяют некие работы, то есть
Р1Е1 = dQ1 ; Р2Е2 = dQ2 (177)
Равенства (176) и (177) очень похожи на прежние выражения (90) и (91). Однако мы помним, что равенства (90) и (91) получены при постоянных экстенсорах, а выражения (176) и (177) - при постоянных интенсиалах.
Принципиальное значение имеет то обстоятельство, что в обоих случаях - в соотношениях взаимности и увлечения - речь идет о силовом механизме взаимного влияния различных степеней свободы ансамбля. Об этом свидетельствует возможность представления соотношений (86) и (172) в виде равенства соответствующих работ (90) и (176). В свою очередь, работы непосредственно равны изменениям энергии ансамбля (см. уравнение (35)). Следовательно, не только изменения состояния, но и перенос должны сопровождаться энергетическими изменениями ансамбля и системы в целом.
Но выше было установлено, что энергия является количественной мерой, определяющей прочность связи порций вещества в ансамбле. Поэтому должно быть ясно, что симметрия во взаимном увлечении различных потоков, характеризуемая соотношениями (173) и (176), есть не что иное, как равенство между собой энергий связи в переносимом ансамбле первого вещества со вторым и второго с первым. Вернее здесь фактически речь идет не о двух, а об одной и той же энергии, которая может быть реализована либо с помощью работы, совершаемой первым веществом при увлечении им второго, либо с помощью работы, совершаемой вторым веществом при увлечении им первого, причем увлечение веществ сопровождается их отрывом друг от друга. Например, перенос термического вещества под действием разности температур сопровождается увлечением электрического вещества и отрывом последнего от термического, а перенос электрического вещества под действием разности электрических потенциалов - увлечением термического вещества и его отрывом от электрического. Вполне естественно, что в переносимом ансамбле энергия связи термического вещества с электрическим в первом случае не отличается от энергии связи электрического вещества с термическим во втором. Таков глубинный смысл соотношений увлечения (и взаимности), из него вытекают интереснейшие следствия.
Прежде всего сказанное позволяет лучше понять реальный физический механизм процессов переноса. В частности, можно утверждать, что не существует жесткой связи между порциями веществ внутри переносимого ансамбля. Если бы связи были жесткими, тогда, например, данный поток термического вещества всегда сопровождался бы переносом определенного количества электрического и, наоборот, в полном соответствии с составом жесткого ансамбля и независимо от того, под действием разности каких интенсиалов происходит перенос. Опыт же показывает совсем иную картину. В действительности данный поток термического вещества, обусловленный наличием некоторой разности температур, увлекает за собой очень малый поток электрического вещества. Точно такой же малый поток электрического вещества, но вызванный соответствующей разностью электрических потенциалов, способен увлечь за собой лишь сверхмалый поток термического вещества, который на много порядков меньше упомянутого выше первого потока термического вещества, и т.д. Это убедительно свидетельствует в пользу вывода о нежестком соединении между собой порций веществ в переносимом ансамбле.
В связи с изложенным возникает также любопытный вопрос о разнице, существующей между веществом, которое участвует в переносе (подвижным), и веществом, которое расходуется на изменение состояния системы (неподвижным). Оказывается, вещество в подвижном и неподвижном состояниях обладает различными свойствами: подвижное определяет величину потока и практически не влияет на состояние системы, а неподвижное, наоборот, определяет состояние, но практически не влияет на перенос (последнее влияние сказывается лишь через изменение интенсиалов системы). При этом появляется ряд эффектов, обусловленных превращением внутри системы подвижного вещества в неподвижное и наоборот. Более подробно все эти вопросы рассматриваются в работах [12, с.196; 18, с.251, 279; 21, с.64, 354] [ТРП, стр.166-169].
- Термодинамика реальных процессов
- Глава I. Новая парадигма науки.
- 1. Ведущая роль парадигмы.
- 2. Определение понятия парадигмы, данное т. Куном.
- 3. Парадигма - это мировоззренческие концепции теории.
- 4. Формулировка новой парадигмы.
- 5. Методы дедукции и индукции.
- 6. Особенности метода общей теории (от).
- 7. Метод принципов и метод гипотез.
- Глава II. Анализ Вселенной.
- 1. Метод анализа.
- 2. Форма явления.
- 3. Количественные меры.
- 4. Связь между веществом и его поведением.
- 5. Основное уравнение от.
- 6. Уравнение Вселенной.
- 7. Уравнение элементарного явления.
- Глава III. Классификация миров.
- 1. Количественные уровни мироздания.
- 2. Правила проницаемости и отторжения.
- 3. Перечень миров.
- 4. Множественность форм явлений данного уровня.
- 5. Формы разного рода.
- 6. Формы разного вида.
- 7. Вариации форм данного вида.
- Глава IV. Эволюция явлений.
- 1. Метод синтеза.
- 2. Парадигма от и эволюция.
- 3. Основное уравнение эволюции от.
- 4. Принцип минимальности эволюционного шага.
- 5. Правила своеобразия и вхождения.
- 6. Множественность эволюционных рядов.
- 7. Перечень форм главного макроряда.
- Глава V. Наипростейшее макроявление.
- 1. Парен.
- 2. Абсолютный покой и ненаблюдаемость парена.
- 3. Неисчерпаемый источник вещества.
- Глава VI. Ансамбль простых явлений.
- 1. Общее уравнение ансамбля.
- 2. Мера количества вещества, или экстенсор.
- 3. Взаимодействия универсальное и специфические.
- 4. Универсальная мера экстенсивности силового взаимодействия,
- 5. Универсальная мера интенсивности силового взаимодействия, или сила.
- 6. Универсальная мера силового взаимодействия, или работа.
- 7. Мера количества поведения вещества.
- Глава VII. Первое начало от.
- 1. Вывод основного уравнения от для ансамбля простых явлений.
- 2. Виды работы.
- 3. Специфическая мера интенсивности силового
- 4. Универсальная мера количества силового поведения ансамбля, или энергия.
- 5. Контрольная поверхность, система и окружающая среда.
- 6. Внутренние и внешние степени свободы системы.
- 7. Первое начало от, или закон сохранения энергии.
- Глава VIII. Второе начало от.
- 1. Вывод уравнения.
- 2. Второе начало от, или закон сохранения количества вещества.
- 3. Особенности применения второго начала от.
- Глава iх. Третье начало от.
- 1. Вывод уравнения.
- 2. Третье начало от, или закон состояния.
- 3. Емкость системы по отношению к веществу.
- 4. Другие виды емкости системы.
- 5. Специфическая мера качества, или структуры, вещества.
- 6. Закон качества, или структуры, вещества.
- 7. Законы структуры второго и более высоких порядков.
- 1. Вывод уравнения.
- 2. Четвертое начало от, или закон взаимности (симметрии структуры).
- 3. Закон симметрии структуры второго порядка.
- 4. Законы симметрии структуры третьего и более высоких порядков.
- 5. Обобщенный закон взаимодействия, или обобщенный третий закон Ньютона.
- 6. Нелинейность дифференциальных уравнений от.
- 7. Идеальная система.
- 1. Состояние и перенос.
- 2. Вывод обобщенного дифференциального уравнения переноса.
- 3. Термодинамический поток и «сила».
- 4. Четыре частных уравнения переноса.
- 5. Пятое начало от, или закон переноса.
- 6. Проводимость и сопротивление.
- 7. Вторая специфическая мера качества, или структуры, вещества.
- 8. Второй закон качества, или структуры, вещества.
- 9. Вторые законы структуры второго и более высоких порядков.
- 10. О теореме Кюри.
- 11. Некоторые эксперименты. Подтверждающие вывод от.
- 12. Возможность сочетания потоков j и I и сил X и y.
- 13. Дифференциальное уравнение нестационарного переноса.
- 14. Особенности применения нестационарного уравнения.
- 1. Вывод уравнения.
- 2. Шестое начало от, или закон увлечения (второй симметрии).
- 3. Второй закон симметрии структуры второго порядка.
- 4. Вторые законы симметрии структуры третьего и более высоких порядков.
- 5. Третьи законы структуры и ее симметрии.
- 6. Четвертые и другие законы структуры и ее симметрии.
- 7. Еще раз об обобщенном законе взаимодействия и третьем законе Ньютона.
- 1. Совместное применение первых двух начал
- 2. Закон заряжания.
- 3. Совместное применение первых двух начал к процессам переноса.
- 4. Закон экранирования.
- 5. Седьмое начало от, или обобщенный закон заряжания.
- 6. Некоторые экспериментальные результаты.
- 7. О построении системы начал.
- Глава XIV. Идентификация простых явлений.
- 1. Истинно простое явление.
- 2. Применение правила своеобразия.
- 3. Применения начал.
- 4. Правило аддитивности.
- 5. Применение характерных свойств нано-, микро- и макромиров.
- 6. Метод подмены явлений.
- 7. Условно простое явление.
- Глава XV. Перечень простых и условно простых форм явлений.
- 1. Простое хрональное явление.
- 2. Простое метрическое явление.
- 3. Условно простое метрическое явление.
- 4. Условно простое механическое явление.
- 5. Условно простое перемещательное явление.
- 6. Условно простое кинетическое явление.
- 7. Простое ротационное явление.
- 8. Условно простое микроротационное (спиновое) явление.
- 9. Условно простое вращательное явление.
- 10. Условно простое кинетовращательное явление.
- 11. Простое вибрационное явление.
- 12. Условно простое микровибрационное (планковское) явление.
- 13. Условно простое колебательное явление.
- 14. Условно простое волновое явление.
- 15. Простое вермическое (термическое) явление.
- 16. Условно простое тепловое явление.
- 17. Простое электрическое явление.
- 18. Простое магнитное явление.
- 19. Условно простое химическое явление.
- 20. Условно простое фазовое явление.
- 21. Условно простое дислокационное явление.
- 22. Условно простое диффузионное явление.
- 23. Условно простое гидродинамическое явление.
- 24. Условно простое фильтрационное явление.
- 25. Условно простое каталитическое явление.
- 26. Условно простое ощущательное явление.
- 27. Условно простое экологическое явление.
- 28. Условно простое информационное явление.
- Глава XVI. Способы применения начал.
- 1. Статика, статодинамика, кинетика и кинетодинамика, или динамика.
- 2. Обратимый и необратимый процессы.
- 3. О совместном применении семи начал.
- 4. Закон тождественности.
- 5. Закон отношения проводимостей.
- 6. Закон отношения потоков.
- 7. Теорема интенсиалов.
- Глава XVII. Снова о свойствах парена, или абсолютного вакуума.
- 1. Среда нулевой энергии.
- 2. Абсолютно твердое тело.
- 3. Абсолютный вакуум.
- 4. О достижимости абсолютного нуля и бесконечности интенсиала.
- 5. Абсолютная система отсчета.
- 6. Среда нулевого сопротивления.
- 7. О симметрии мира.
- Глава XVIII. Хрональное явление.
- 1. Хрональное поле.
- 2. Теория хрональных источников.
- 3. Хроносфера.
- 4. Хрональные генераторы.
- 5. Хрональные аккумуляторы.
- 6. Биополе и хрональное явление.
- 7. Измерение хронального поля рамками.
- 8. Измерение хронального поля электронными приборами.
- 9. Свойства хронального наноявления, хрональное нанополе.
- 10. Свойства хронального микроявления, знак хрононов.
- 11.Свойства ротационного наноявления, взаимодействие хрононов.
- 12. Скорость хрононов.
- 13. Дифракция хрононов.
- 14. Рассеяние хрононов на хрононах.
- 15. Рассеяние хрононов на фотонах.
- 16. Рассеяние фотонов на хрононах.
- 17. Взаимное увлечение хрононов и фотонов.
- 18. Хрононы в магнитном поле.
- 19. Свойства хронального макроявления, ход реального времени.
- 20. Влияние хронального поля на электронику.
- 21. Хрональные свойства тел.
- 22. Геохрональные полосы.
- 23. Хрональные вспышки на Солнце.
- 24. Смерч, электрофонные болиды, шаровая молния.
- 25. Хрональная связь изображения с первообразом.
- 26. Землетрясения, цунами.
- 27. Фазовые превращения в материале.
- 28. Предупреждение экспериментатору.
- Глава XIX. Метрическое явление.
- 1. Механика Ньютона.
- 2. Обсуждение законов механики.
- 3. Некоторые прогнозы от.
- Глава XX. Вермическое явление.
- 1. Эволюция представлений о теплоте.
- 2. Теория теплообмена.
- 3. Классическая термодинамика Клаузиуса.
- 4. Термодинамика необратимых процессов Онзагера.
- 5. Обсуждение проблемы теплоты с позиции от.
- 6. Определение кванта вермического вещества (вермианта).
- 7. Экспериментальное определение универсального взаимодействия.
- 1. Условия нарушения третьего закона Ньютона.
- 2. Условия нарушения закона сохранения количества движения.
- 3. Возникновение внутренней силы в устройствах типа бм-28.
- 4. Устройства бм-29 и бм-30.
- 5. Устройства типа бм-33.
- 6. Устройства типа бм-34.
- 7. Устройства типа бм-35.
- 1. Техническое оснащение эксперимента.
- 2. Методика взвешивания.
- 3. Устройства типа бм-28.
- 4. Устройства типа бм-29 и бм-30.
- 5. Устройства типа бм-33 и бм-34.
- 6. Устройства типа бм-35.
- 7. Перспективы применения «движения за счет внутренних сил».
- 1. Запреты второго закона Клаузиуса.
- 2. Условия, необходимые и достаточные для осуществления
- 3. Нарушение теории фазовых превращений Томсона-Кельвина.
- 4. Термофазовые пд.
- 5. Нарушение закона Вольта.
- 6. Термоэлектрические пд.
- 7. Термоэлектрические пд, использующие новый
- 1. Термофазовые пд..
- 2. Термоэлектрические пд.
- 3. Перспективы применения вечных двигателей второго рода.
- Глава XXV. Более сложные формы явлений
- 1. Взаимодействие тел.
- 2. Термодинамическая пара, или принцип самофункционирования.
- 3. Самоорганизация, жизнь, общество, цивилизация, глобальная экология,
- Глава XXVI. Жизнь, цивилизация, экология...
- 1. Роль хронального явления в хронально-метрическом мире.
- 2. Регулирование темпа жизненных процессов.
- 3. Регулирование долголетия.
- 4. Материальность мысли.
- 5. Определение хрональной энергетики человека.
- 6. Влияние на энергетику различных факторов.
- 7. Ошибки поведения и заболевания человека.
- 8. Врачевание хрональным полем.
- 9. Условия здоровой жизни.
- 10. Искусство и хроносфера.
- 11. Экология души.
- 12. Покаяние.
- 13. Об апокалипсисе экологическом.
- 14. Внехрональные объекты.
- Глава XXVII. Аттомир, фемтомир, пикомир, макромир, мегамир...
- 1. Роль метрического явления в хронально-метрическом мире.
- 2. Парапсихология.
- 3. Левитация, хождение по воде.
- 4. Польтергейст.
- 5. Феномены из книги чудес.
- 6. Нло в прежние времена.
- 7. Современный нло и от.
- 8. Ретроспективный анализ феномена.
- 9. Живые и мертвые и пикомир.
- 10. Фемтомир и телепортация.
- 11. Добро и зло.
- 12. Что есть человек, мышление, память, сновидение,
- 13. Информация к размышлению.
- 14. Парадоксы Вселенной.
- Глава XXVIII. Новая теория информации.
- 1. Уравнение закона сохранения информэнергии.
- 2. Количество и ценность информации.
- 3. Семантика (смысловое содержание) информации.