19. Свойства хронального макроявления, ход реального времени.
Самая важная специфическая черта истинно простого хронального явления заключается в том, что оно придает системе свойство длительности, то есть фактически определяет темп, скорость всех процессов, протекающих в системе, ее хрональную активность. С увеличением хрональной активности (хронала) системы темп процессов возрастает, а с уменьшением - падает. Чтобы в этом убедиться, рассмотрим несколько экспериментов объективного характера, имеющих принципиальное значение.
Первая серия экспериментов демонстрирует влияние хронального поля на скорость распада радиоактивного тория. Схема опыта похожа на определение эффекта рассеяния фотонов на хрононах (см. параграф 16 гл. XVIII). Источник гамма-квантов содержит семь моточков с наружным диаметром 165 мм и общей массой 3,2 кг проволоки из торированного вольфрама. Чтобы витки меньше экранировали друг друга, центры моточков смещены друг относительно друга так, что общая габаритная длина источника составляет 25,5 см, а толщина около 5 см. Расстояние между источником и прежним радиометром равно 14 см, на эту же величину приподняты над столом оси источника и радиометра. Семь прежних змеек расположены либо вдоль (в три ряда, одна змейка сбоку), либо поперек (в семь рядов) картонки размером 14х28 см, расстояние между осями змеек во всех случаях равно 30 мм. Картонки помещаются на столе продольно под источником или радиометром, пространство между последними свободно от змеек. Все остальные условия опыта прежние.
Измерения показывают, что количество фиксируемых гамма-квантов почти на порядок превышает фон. Картонка с продольными змейками, помещенная под источник, ускоряет распад на 5,5%, а с поперечными - на 6,5%. Змейки, расположенные только под радиометром, дают величину 5,5%, а под источником и радиометром одновременно - около 6,5%. При этом надо иметь в виду, что в ручке радиометра расположены некоторые микросхемы, общая длина радиометра с ручкой равна 35 см. Важно также помнить, что с течением времени в ходе опытов змейки заряжают стол и окружающие предметы, это начинает заметно сказываться на результатах измерений, ибо удаление змеек уже не возвращает систему в исходное состояние, какое было до начала всех измерений. Указанный недостаток менее заметен, если картонку со змейками держать на весу, как это было сделано в опытах с рассеянием.
Полученные результаты хорошо согласуются с изложенными в параграфе 16 гл. XVIII. Они свидетельствуют о существенном ускорении темпа распада атомов радиоактивного тория в хрональном поле змеек. При этом длительность между отдельными распадами уменьшается, то есть ход реального времени в источнике замедляется (см. параграф 1 гл. XV). Отсюда следует важный вывод о том, что в определенных условиях применение радиоизотопных часов, которые широко используются для сверхточных измерений времени, может привести к заметным погрешностям. Описанные опыты отличаются предельной простотой и могут быть легко воспроизведены при наличии минимальных средств.
Другая серия экспериментов выполнена с "ежом", о котором подробно говорится в параграфе 9 гл. XVIII (см. рис. 13, а). При определении хода реального времени в хрональном поле "ежа" испытаны наручные электронные кварцевые часы, механические часы, датчики типа ДГ-1 с кварцевым микрорезонатором, подключенные к частотомеру, и т.д. Эталонный ход времени определялся по радиосигналам. В опытах с наручными часами разница между сигналами точного времени и показаниями часов устанавливалась с помощью дополнительного механического или электронного секундомера с ценой деления 0,1 с. Каждый опыт длился несколько суток кряду, при этом осреднялись десятки измерений хода времени, фиксируемого по радио ежечасно, а также вносились поправки на естественный дрейф часов при данной температуре.
Хронал центральной, или рабочей, полости "ежа" превышает хронал Земли, поэтому механические, электронные, радиоактивные и иные часы, помещенные в эту полость, заряжаются хрональным веществом и показывают ускорение всех процессов (замедление хода реального времени). Маленький стеклянный датчик заряжается за несколько секунд, небольшие часы - за несколько минут, большие - за несколько суток. Одновременно происходит быстрое старение кварца часов и датчика, это приходится учитывать путем специальных тарировок и внесения необходимых поправок в результаты. Наручные часы "Электроника 5" 7, помещенные в "ежа" (см. рис. 13, а), ускорили свой ход. Часы удобны тем, что они прямо показывают ускорение, выраженное в секундах, однако при этом надо помнить, что ускорение хода часов не есть ускорение хода реального времени в них; ход времени, наоборот, замедляется, повышается лишь хронал , а с ним и частота колебаний кварцевого микрорезонатора. Поскольку эта величина слишком мала и неудобна для обозрения, ее приходится накапливать. На графиках рис. 13, в (кривая 1) и г приведено ускорение, накопленное за сутки. Фактически эта величина представляет собой безразмерный хронал , если сутки заменить секундами (1 сут = 86400 с.). Например, значению 0,1 с/сут соответствует хронал = 86400,1/86400 =1,00000116. Во столько же раз в системе замедляется ход реального времени по сравнению с эталонным t, но подобными числами оперировать неудобно.
Начальное ускорение хода часов на рис. 13, в отмечено крестиком в кружочке. Это ускорение найдено по сигналам точного времени в течение пяти дней, за которые часы успели заметно состариться и замедлить свой ход. Опыт со свежими часами и дополнительным секундомером, проведенный в течение часа, показал начальное ускорение хода часов, равное 0,7 с/сут. По этим данным можно судить о количественной стороне эффекта старения электронных часов в хрональном поле.
Кривая 2 на рис. 13, в получена с помощью датчика типа ДГ-1 с кварцевым микрорезонатором на 10 МГц, подключенного к электронно-счетному частотомеру ЧЗ-34, спустя два года после начала первого опыта с часами (вертикальная штриховая линия соответствует радиусу коробки с "ежом"). Причем измерения времени для кривой 1 посредством часов длились более полугода, а для кривой 2 посредством датчика - менее 1 ч. "Еж" работал всего месяц (этот момент на рис. 13, г отмечен вертикальной штриховой линией), после чего его пришлось разобрать и удалить из коробки и из помещения, поэтому в обоих случаях фактически действуют остаточные хрональные излучения, аккумулированные коробкой, стенами комнаты, мебелью и т.д. Этот эффект заслуживает особого внимания: оказывается, в процессе аккумулирования хрональное поле сохраняет свою направленность и после удаления источника в точности воспроизводит в пространстве последний. Думаю, что этот любопытнейший факт найдет самые неожиданные применения на практике.
Весьма интересны кривые 1 и 2 на рис. 13, в. Волновой характер изменения хронала с расстоянием лишний раз свидетельствует о том, что хрононы одновременно располагают метрической и вибрационной степенями свободы. Размытый характер конца кривой 2 объясняется тем, что в течение предшествующих измерению двух лет была переставлена мебель: удален с того места диван, передвинут стол и т.д. Об ослаблении хронального поля с расстоянием вследствие дивергенции говорит постепенное приближение кривых 1 и 2 к оси абсцисс.
Часы обладают малой хроноемкостью, поэтому заряжаются и разряжаются сравнительно быстро, почти точно следуя изменению хронала данной точки, комната - большой, поэтому заряжается и разряжается медленно. О темпе заряжания комнаты можно судить по медленному подъему кривой на рис. 13, г. При этом часы обычно располагались мною на расстоянии 4 м от "ежа" на дальней полке, но иногда переставлялись на стол, этим объясняется скачкообразный характер кривой. О разряжании комнаты со временем можно судить по относительному расположению кривых 1 и 2 на рис. 13, в.
Приведенные экспериментальные данные хорошо иллюстрируют основное свойство хронального явления на примере ускорения процессов распада атомов и колебаний кварцевой пластинки микрорезонатора в хрональном поле. Об этом же свидетельствуют предыдущие опыты с соленоидом и магнитным полем. Все эти результаты суть частные случаи общего эффекта воздействия хронального поля на темп протекания любых процессов в любых телах. Ниже будут получены не менее убедительные подтверждения этого общего эффекта на примере других процессов: кинетических, кинетовращательных и колебательных (см. гл. XXII), биологических (см. гл. XXVI) и т.д. Однако при выполнении и обсуждении подобных опытов полезно не упускать из виду следующее обстоятельство.
Темп процессов обычно определяется с помощью особых датчиков, иногда очень сложных по своей структуре. И может случиться, что из-за наличия соответствующих внутренних связей датчик будет переворачивать поступающий сигнал и вместо ускорения процесса станет показывать его замедление либо будет завышать или занижать истинные значения скорости. Это вполне реальная ситуация в условиях, когда используются сложные электронные схемы. Поэтому, чтобы не впасть в ошибку, надо прежде познакомиться с характеристиками датчика путем сравнения его с таковыми, например, из группы простейших механических явлений, которые свободны от подобных отклонений (см. параграфы 14 гл. XV и 8 гл. XVIII).
На рис. 13, в кривые 1 и 2 сняты с помощью электронных часов и датчика ДГ-1, в обоих случаях электронные схемы удачно не исказили частоту колебаний кварцевой пластинки микрорезонаторов. В опытах с соленоидом датчик ДГ-1 с кварцевым микрорезонатором показывает истинное значение частоты, а второй датчик (ДГ-2) умножает частоту, что тоже важно иметь в виду, например, при измерениях малых величин. Аналогично повышает частоту колебаний кварцевой пластинки применение двух магнитиков (см. предыдущий параграф). В таких случаях требуется соответствующая предварительная тарировка датчиков [ТРП, стр.373-377].
- Термодинамика реальных процессов
- Глава I. Новая парадигма науки.
- 1. Ведущая роль парадигмы.
- 2. Определение понятия парадигмы, данное т. Куном.
- 3. Парадигма - это мировоззренческие концепции теории.
- 4. Формулировка новой парадигмы.
- 5. Методы дедукции и индукции.
- 6. Особенности метода общей теории (от).
- 7. Метод принципов и метод гипотез.
- Глава II. Анализ Вселенной.
- 1. Метод анализа.
- 2. Форма явления.
- 3. Количественные меры.
- 4. Связь между веществом и его поведением.
- 5. Основное уравнение от.
- 6. Уравнение Вселенной.
- 7. Уравнение элементарного явления.
- Глава III. Классификация миров.
- 1. Количественные уровни мироздания.
- 2. Правила проницаемости и отторжения.
- 3. Перечень миров.
- 4. Множественность форм явлений данного уровня.
- 5. Формы разного рода.
- 6. Формы разного вида.
- 7. Вариации форм данного вида.
- Глава IV. Эволюция явлений.
- 1. Метод синтеза.
- 2. Парадигма от и эволюция.
- 3. Основное уравнение эволюции от.
- 4. Принцип минимальности эволюционного шага.
- 5. Правила своеобразия и вхождения.
- 6. Множественность эволюционных рядов.
- 7. Перечень форм главного макроряда.
- Глава V. Наипростейшее макроявление.
- 1. Парен.
- 2. Абсолютный покой и ненаблюдаемость парена.
- 3. Неисчерпаемый источник вещества.
- Глава VI. Ансамбль простых явлений.
- 1. Общее уравнение ансамбля.
- 2. Мера количества вещества, или экстенсор.
- 3. Взаимодействия универсальное и специфические.
- 4. Универсальная мера экстенсивности силового взаимодействия,
- 5. Универсальная мера интенсивности силового взаимодействия, или сила.
- 6. Универсальная мера силового взаимодействия, или работа.
- 7. Мера количества поведения вещества.
- Глава VII. Первое начало от.
- 1. Вывод основного уравнения от для ансамбля простых явлений.
- 2. Виды работы.
- 3. Специфическая мера интенсивности силового
- 4. Универсальная мера количества силового поведения ансамбля, или энергия.
- 5. Контрольная поверхность, система и окружающая среда.
- 6. Внутренние и внешние степени свободы системы.
- 7. Первое начало от, или закон сохранения энергии.
- Глава VIII. Второе начало от.
- 1. Вывод уравнения.
- 2. Второе начало от, или закон сохранения количества вещества.
- 3. Особенности применения второго начала от.
- Глава iх. Третье начало от.
- 1. Вывод уравнения.
- 2. Третье начало от, или закон состояния.
- 3. Емкость системы по отношению к веществу.
- 4. Другие виды емкости системы.
- 5. Специфическая мера качества, или структуры, вещества.
- 6. Закон качества, или структуры, вещества.
- 7. Законы структуры второго и более высоких порядков.
- 1. Вывод уравнения.
- 2. Четвертое начало от, или закон взаимности (симметрии структуры).
- 3. Закон симметрии структуры второго порядка.
- 4. Законы симметрии структуры третьего и более высоких порядков.
- 5. Обобщенный закон взаимодействия, или обобщенный третий закон Ньютона.
- 6. Нелинейность дифференциальных уравнений от.
- 7. Идеальная система.
- 1. Состояние и перенос.
- 2. Вывод обобщенного дифференциального уравнения переноса.
- 3. Термодинамический поток и «сила».
- 4. Четыре частных уравнения переноса.
- 5. Пятое начало от, или закон переноса.
- 6. Проводимость и сопротивление.
- 7. Вторая специфическая мера качества, или структуры, вещества.
- 8. Второй закон качества, или структуры, вещества.
- 9. Вторые законы структуры второго и более высоких порядков.
- 10. О теореме Кюри.
- 11. Некоторые эксперименты. Подтверждающие вывод от.
- 12. Возможность сочетания потоков j и I и сил X и y.
- 13. Дифференциальное уравнение нестационарного переноса.
- 14. Особенности применения нестационарного уравнения.
- 1. Вывод уравнения.
- 2. Шестое начало от, или закон увлечения (второй симметрии).
- 3. Второй закон симметрии структуры второго порядка.
- 4. Вторые законы симметрии структуры третьего и более высоких порядков.
- 5. Третьи законы структуры и ее симметрии.
- 6. Четвертые и другие законы структуры и ее симметрии.
- 7. Еще раз об обобщенном законе взаимодействия и третьем законе Ньютона.
- 1. Совместное применение первых двух начал
- 2. Закон заряжания.
- 3. Совместное применение первых двух начал к процессам переноса.
- 4. Закон экранирования.
- 5. Седьмое начало от, или обобщенный закон заряжания.
- 6. Некоторые экспериментальные результаты.
- 7. О построении системы начал.
- Глава XIV. Идентификация простых явлений.
- 1. Истинно простое явление.
- 2. Применение правила своеобразия.
- 3. Применения начал.
- 4. Правило аддитивности.
- 5. Применение характерных свойств нано-, микро- и макромиров.
- 6. Метод подмены явлений.
- 7. Условно простое явление.
- Глава XV. Перечень простых и условно простых форм явлений.
- 1. Простое хрональное явление.
- 2. Простое метрическое явление.
- 3. Условно простое метрическое явление.
- 4. Условно простое механическое явление.
- 5. Условно простое перемещательное явление.
- 6. Условно простое кинетическое явление.
- 7. Простое ротационное явление.
- 8. Условно простое микроротационное (спиновое) явление.
- 9. Условно простое вращательное явление.
- 10. Условно простое кинетовращательное явление.
- 11. Простое вибрационное явление.
- 12. Условно простое микровибрационное (планковское) явление.
- 13. Условно простое колебательное явление.
- 14. Условно простое волновое явление.
- 15. Простое вермическое (термическое) явление.
- 16. Условно простое тепловое явление.
- 17. Простое электрическое явление.
- 18. Простое магнитное явление.
- 19. Условно простое химическое явление.
- 20. Условно простое фазовое явление.
- 21. Условно простое дислокационное явление.
- 22. Условно простое диффузионное явление.
- 23. Условно простое гидродинамическое явление.
- 24. Условно простое фильтрационное явление.
- 25. Условно простое каталитическое явление.
- 26. Условно простое ощущательное явление.
- 27. Условно простое экологическое явление.
- 28. Условно простое информационное явление.
- Глава XVI. Способы применения начал.
- 1. Статика, статодинамика, кинетика и кинетодинамика, или динамика.
- 2. Обратимый и необратимый процессы.
- 3. О совместном применении семи начал.
- 4. Закон тождественности.
- 5. Закон отношения проводимостей.
- 6. Закон отношения потоков.
- 7. Теорема интенсиалов.
- Глава XVII. Снова о свойствах парена, или абсолютного вакуума.
- 1. Среда нулевой энергии.
- 2. Абсолютно твердое тело.
- 3. Абсолютный вакуум.
- 4. О достижимости абсолютного нуля и бесконечности интенсиала.
- 5. Абсолютная система отсчета.
- 6. Среда нулевого сопротивления.
- 7. О симметрии мира.
- Глава XVIII. Хрональное явление.
- 1. Хрональное поле.
- 2. Теория хрональных источников.
- 3. Хроносфера.
- 4. Хрональные генераторы.
- 5. Хрональные аккумуляторы.
- 6. Биополе и хрональное явление.
- 7. Измерение хронального поля рамками.
- 8. Измерение хронального поля электронными приборами.
- 9. Свойства хронального наноявления, хрональное нанополе.
- 10. Свойства хронального микроявления, знак хрононов.
- 11.Свойства ротационного наноявления, взаимодействие хрононов.
- 12. Скорость хрононов.
- 13. Дифракция хрононов.
- 14. Рассеяние хрононов на хрононах.
- 15. Рассеяние хрононов на фотонах.
- 16. Рассеяние фотонов на хрононах.
- 17. Взаимное увлечение хрононов и фотонов.
- 18. Хрононы в магнитном поле.
- 19. Свойства хронального макроявления, ход реального времени.
- 20. Влияние хронального поля на электронику.
- 21. Хрональные свойства тел.
- 22. Геохрональные полосы.
- 23. Хрональные вспышки на Солнце.
- 24. Смерч, электрофонные болиды, шаровая молния.
- 25. Хрональная связь изображения с первообразом.
- 26. Землетрясения, цунами.
- 27. Фазовые превращения в материале.
- 28. Предупреждение экспериментатору.
- Глава XIX. Метрическое явление.
- 1. Механика Ньютона.
- 2. Обсуждение законов механики.
- 3. Некоторые прогнозы от.
- Глава XX. Вермическое явление.
- 1. Эволюция представлений о теплоте.
- 2. Теория теплообмена.
- 3. Классическая термодинамика Клаузиуса.
- 4. Термодинамика необратимых процессов Онзагера.
- 5. Обсуждение проблемы теплоты с позиции от.
- 6. Определение кванта вермического вещества (вермианта).
- 7. Экспериментальное определение универсального взаимодействия.
- 1. Условия нарушения третьего закона Ньютона.
- 2. Условия нарушения закона сохранения количества движения.
- 3. Возникновение внутренней силы в устройствах типа бм-28.
- 4. Устройства бм-29 и бм-30.
- 5. Устройства типа бм-33.
- 6. Устройства типа бм-34.
- 7. Устройства типа бм-35.
- 1. Техническое оснащение эксперимента.
- 2. Методика взвешивания.
- 3. Устройства типа бм-28.
- 4. Устройства типа бм-29 и бм-30.
- 5. Устройства типа бм-33 и бм-34.
- 6. Устройства типа бм-35.
- 7. Перспективы применения «движения за счет внутренних сил».
- 1. Запреты второго закона Клаузиуса.
- 2. Условия, необходимые и достаточные для осуществления
- 3. Нарушение теории фазовых превращений Томсона-Кельвина.
- 4. Термофазовые пд.
- 5. Нарушение закона Вольта.
- 6. Термоэлектрические пд.
- 7. Термоэлектрические пд, использующие новый
- 1. Термофазовые пд..
- 2. Термоэлектрические пд.
- 3. Перспективы применения вечных двигателей второго рода.
- Глава XXV. Более сложные формы явлений
- 1. Взаимодействие тел.
- 2. Термодинамическая пара, или принцип самофункционирования.
- 3. Самоорганизация, жизнь, общество, цивилизация, глобальная экология,
- Глава XXVI. Жизнь, цивилизация, экология...
- 1. Роль хронального явления в хронально-метрическом мире.
- 2. Регулирование темпа жизненных процессов.
- 3. Регулирование долголетия.
- 4. Материальность мысли.
- 5. Определение хрональной энергетики человека.
- 6. Влияние на энергетику различных факторов.
- 7. Ошибки поведения и заболевания человека.
- 8. Врачевание хрональным полем.
- 9. Условия здоровой жизни.
- 10. Искусство и хроносфера.
- 11. Экология души.
- 12. Покаяние.
- 13. Об апокалипсисе экологическом.
- 14. Внехрональные объекты.
- Глава XXVII. Аттомир, фемтомир, пикомир, макромир, мегамир...
- 1. Роль метрического явления в хронально-метрическом мире.
- 2. Парапсихология.
- 3. Левитация, хождение по воде.
- 4. Польтергейст.
- 5. Феномены из книги чудес.
- 6. Нло в прежние времена.
- 7. Современный нло и от.
- 8. Ретроспективный анализ феномена.
- 9. Живые и мертвые и пикомир.
- 10. Фемтомир и телепортация.
- 11. Добро и зло.
- 12. Что есть человек, мышление, память, сновидение,
- 13. Информация к размышлению.
- 14. Парадоксы Вселенной.
- Глава XXVIII. Новая теория информации.
- 1. Уравнение закона сохранения информэнергии.
- 2. Количество и ценность информации.
- 3. Семантика (смысловое содержание) информации.