logo search
Термодинамика Реальных Процессов

7. Законы структуры второго и более высоких порядков.

Коэффициенты пропорциональности В , входящие в уравнения (73) и (76), тоже выражаются через интенсиалы, но уже в виде производных второго порядка (см. соотношения (74) и (77)). Поэтому они представляют собой коэффициенты структуры второго порядка, или просто структуры второго порядка, ибо связаны с силовым поведением вещества и, следовательно, характеризуют соответствующие более тонкие особенности процесса структурообразования, причем структуры В111 и В222 - основные, а остальные (В112 , В121 и т. д.) - перекрестные, или взаимности.

Для определения неизвестных величин В можно восполь­зоваться третьей строчкой основного уравнения (15). При этом структуры В играют роль свойств Xi , то есть

Xi = В (78)

Из соотношений (15), (27) и (78) получаем следующую систему уравнений, охватывающих все восемь коэффициентов В , входящих в равенства (74) (для простоты выписываем только первую строчку этой системы):

В111 = f1111 ; Е2) (79)

...

Продифференцировав уравнения (79), находим

dB111 = C1111dE1 + C1112dE2 (80)

...

где

С1111 = (В111/Е1)Е2 = 2А11/Е21 = 3Р1/Е31 = 4U/Е4 (81)

...

В частном случае

В = f(Е) (82)

dВ = СdЕ (83)

где

С = dВ/dE = d2А/dE2 = d3Р/dE3 = d4U/dE4 (84)

Дифференциальные уравнения четвертого порядка (80) и (83) определяют коэффициенты структуры второго порядка В через более тонкие свойства С - основные и перекрестные, - являющиеся коэффициентами пропорциональности при экстенсорах. Из этих уравнений видно, что изменение любого данного коэффициента структуры второго порядка складывается из n величин, каждая из которых равна произведению соответству­ющего коэффициента структуры третьего порядка С на измене­ние сопряженного с ним экстенсора.

Найденный результат составляет содержание закона струк­туры второго порядка. С его помощью находятся структуры В , входящие в уравнения (73) и (76) закона структуры первого порядка (закона качества, или структуры, вещества).

Эту цепочку законов структуры различных порядков можно было бы продолжить, выразив коэффициенты структуры третьего порядка С через экстенсоры по типу равенств (78) и (79), при этом появятся коэффициенты структуры четвертого порядка D и т.д. [18, с. 20, 73; 21, с. 52]. Каждый последующий закон характеризует все более тонкие особенности процесса структурообразования, причем число этих особенностей непре­рывно возрастает, особенно сильно сказывается состав системы, в частности величина n . Например, при n = 1 мы имеем по одному коэффициенту А , В и С ; при n = 2 количество этих коэффициентов соответственно равно 4, 8 и 16. Среди всех этих законов наиболее важное значение имеет первый, соот­ветствующий третьему началу ОТ: он связывает две главные характеристики вещества и его поведения – интенсиал Ρ (мера качества поведения) и структуру А (мера качества вещества).

На практике роль отдельных свойств А, В, С, D и т. д. определяется тем, насколько заметно они изменяются с экстенсорами. Например, если в первом приближении можно считать, что структура А (или емкость К) есть величина постоянная, тогда коэффициенты структуры В , С , D и т.д. обращаются в нуль. Если точность первого приближения недостаточна, то во втором приближении для определения теперь уже пере­менной структуры А (или емкости К) используются уравнения (73); при этом коэффициенты структуры В считаются постоян­ными, а величины С и т.д. равны нулю. В третьем прибли­жении нужно пользоваться уравнениями типа (80) при по­стоянных значениях коэффициентов С и нулевых D и т.д. [ТРП, стр.123-124].

Глава Х. Четвертое начало ОТ.