logo search
Термодинамика Реальных Процессов

13. Дифференциальное уравнение нестационарного переноса.

Необходимо подчеркнуть, что все выведенные уравнения пере­носа являются строгими только для стационарного режима. При нестационарном процессе, когда интенсиалы претерпевают изменения, внутри системы наряду с переносом происходит также накопление или убыль вещества. В этих условиях важную роль приобретают емкости, причем для определения свойств системы требуется вывести особые уравнения нестационарного переноса.

В общем случае система располагает n степенями свободы, а интенсиалы изменяются вдоль всех трех координат х , у и z одновременно; такое поле интенсиалов именуется трехмерным. Для вывода простейших уравнений нестационарного переноса используются второе и третье начала ОТ, а также третье частное уравнение пятого начала. В системе мысленно вы­деляется элементарный объем dV . Количество данного веще­ства, вошедшего в этот объем за время dt , сопоставляется с количеством вещества, вышедшего из этого объема за то же время. Разница между этими количествами идет на изменение интенсиалов рассматриваемого объема. В результате полу­чается дифференциальное уравнение нестационарного переноса вещества [12, с.303; 14, с.348; 16, с.41; 17, с.104; 18, с.414; 21, с.195]. Здесь для простоты мы ограничимся случаем, когда система располагает всего двумя степенями свободы (n = 2), а ее интенсиалы изменяются только вдоль одной координаты х (одномерное поле интенсиалов). В этих условиях дифферен­циальное уравнение нестационарного переноса приобретает вид

U1 = L11Z1 + L12Z2 (157)

U2 = L21Z1 + L22Z2

где

U1 = P11(P1/t) ; U2 = P22(P2/t) ;

Z1 = 2P1/x2 ; Z2 = 2P2/x2 ;

P11 = KP11/m ; P22 = KP22/m ;

 - плотность вещества системы, кг/м3; - удельная массо­вая емкость системы по отношению к данному веществу; m - масса системы, кг.

Для гипотетического частного случая, когда n = 1 и поле интенсиала одномерное, находим

U = LZ

или

P/t = D(2P/x2) (158)

где D - диффузивность:

D = L/() (159)

Из выражения (158) в частном случае получаются извест­ные дифференциальные уравнения теплопроводности Фурье, второго закона Фика и т.д. Методы решения дифференци­альных уравнений типа (157) разрабатывались Н.А. Буткевичюсом [6] [ТРП, стр.160-161].