4. Универсальная мера количества силового поведения ансамбля, или энергия.
Следующей, самой важной характеристикой уравнения (31) служит мера U, играющая роль величины Ν4 в уравнениях (14) и (26).
Известно, что у любого правильно составленного уравнения все слагаемые имеют одинаковую размерность. Поэтому мера U тоже должна иметь размерность работы (Дж). Кроме того, мы знаем, что при образовании и распаде ансамбля совершаемая работа каким-то образом аккумулируется ансамблем и затем может вновь проявиться в виде работы. Иными словами, величина U определяет количество силового поведения, заключенного в ансамбле. Перечисленными свойствами обладает хорошо известная мера, именуемая энергией.
Хотя работа и энергия имеют одну и ту же размерность, они по сути дела представляют собой совершенно различные характеристики. Работу можно назвать мерой количества поведения, обусловленного перемещением порций веществ в процессе образования или распада ансамбля; когда процесс прекращается, тогда перемещения нет и работа равна нулю. Энергия - это мера количества поведения, которое накапливается в ансамбле в ходе его образования и совершения работы. Количественная связь между обоими этими видами поведения определяется уравнением (31).
Весьма примечательно - об этом свидетельствует непосредственный опыт, - что аккумулированная энергия обычно сохраняет в ансамбле свою специфическую «окраску», сопряженную с «окраской» совершаемой работы, которая, в свою очередь определяется сортом подводимых или отводимых квантов вещества. Поэтому, как и в случае работы, требуется различать кинетическую, электрическую и другие составляющие энергии; об исключениях из этого правила говорится ниже. Вместе с тем сама по себе мера U обладает предельной универсальностью.
По своей универсальности энергия стоит на одном уровне и органически связана с такими характеристиками, как сила и перемещение. Поэтому сила есть универсальная мера качества поведения вещества, причем поведение проявляется в виде притяжения и отталкивания, а энергия - это универсальная мера количества силового поведения ансамбля, которое проявляется в удержании квантов друг подле друга. Следовательно, меру U можно назвать также энергией связи между квантами, заключенной в ансамбле.
Универсальность понятия энергии обусловлена еще и тем, что оно применимо не только ко всем разнородным простым веществам, но и ко всем без исключения более сложным формам явлений. Это прямо вытекает из правила вхождения, согласно которому всякое сложное явление включает в себя более простые. Поэтому с помощью энергии можно оценивать количество примитивного силового поведения, заключенного в любом сложном явлении, включая общество и т.д. Разумеется, на сложном уровне наряду с силовой явления располагают также возможностями использовать и другие, более совершенные формы поведения, для оценки количества которых впоследствии будет найдена своя особая мера. Что же касается простого уровня, то на нем силовой примитив - это единственно возможный, единственно доступный для явления способ поведения, а энергия - единственная мера, определяющая количество этого поведения.
Весьма важно, что за спиной энергии, как и силы, всегда стоят свои особые вещества, которые цементируют ансамбль в единое целое. Однако энергия-мера и упомянутые вещества суть принципиально различные вещи. Поэтому энергию недопустимо отождествлять ни с веществом, ни с какими бы то ни было иными объектами или понятиями. Согласно ОТ, никакого другого смысла, кроме указанного - быть универсальной мерой количества поведения на уровне ансамбля простых явлений, - энергия не имеет и иметь не может.
В связи с приведенной здесь формулировкой понятия энергии необходимо обратить внимание на то разнообразие во взглядах и определениях, которое господствует в современной науке. Впервые понятие энергии возникло в механике. Намеки на это понятие содержатся уже в комментариях Филопона (VI в.) на труды Аристотеля - речь идет об «импето» [53, с.25]. В XVII в. Гюйгенсом, Лейбницем и другими кинетическая энергия, или «живая сила», была определена как произведение массы на квадрат скорости [53, с.94]; в XIX в. Кориолис исправил это выражение, введя в него множитель, равный одной второй [53, с.95]. Так энергия оказалась связанной с кинетическими представлениями.
Примерно в тот же период формировалось понимание теплоты как движения внутренних частей тел (Бэкон, Кеплер). В частности, в 1752 г. Эйлер писал: «То, что теплота заключается в некотором движении малых частиц тела, теперь уже достаточно ясно» [53, с.168]. Создание Кренигом, Клаузиусом, Максвеллом и другими кинетической теории теплоты [53, с.237] послужило основанием отождествлять энергию с теплотой (через кинетическую энергию молекул).
Далее при анализе законов излучения абсолютно черного тела Планк ввел понятия кванта действия и квантов (порций) энергии, которые излучаются телом в окружающую среду [53, с.338]. Эти порции энергии были затем отождествлены с квантами света, или фотонами. В результате под энергией теперь часто понимают просто фотоны, или так называемое электромагнитное поле.
Таким образом, в ходе исторического развития науки энергия превратилась в одну из наиболее трудно доступных для понимания категорий. Согласно традиционному мышлению, энергия есть одновременно кинетическая энергия, теплота, фотоны (свет), электромагнитные волны; ее принято выражать (а иногда и отождествлять) через массу, считать, что она порождается гравитацией, и т.д. В некоторых из имеющихся определений можно видеть явное отождествление энергии-меры с той сущностью, которую эта мера призвана определять. Нечто похожее мы наблюдали ранее в случае определения понятия силы. Все это, конечно, не способствует выявлению истинного физического смысла понятия энергии.
Теперь должно быть совершенно ясно, что энергия - это универсальная мера (и только мера!) количества простого силового поведения, заключенного в теле. Энергия сопоставляется с работой в уравнении (31) и измеряется в джоулях. Будучи мерой, энергия, как и всякая другая мера, предназначена для подстановки в расчетные формулы; фотоны в формулу не подставишь.
Подведем некоторые итоги. Перед нами стояла задача - определить физический смысл количественных мер, входящих в общее уравнение ансамбля простых явлений (26), и таким образом, избавившись от нулей, придать этому уравнению доступную для практического использования форму. Непосредственно глядя на уравнение (26) и готовый ансамбль, этого сделать было нельзя. Пришлось рассмотреть физический механизм (процесс) образования ансамбля из отдельных порций вещества. Такой подход представляется наиболее простым, наглядным и экономным из всех возможных. В ходе рассуждений логика привела к детальному ознакомлению с особенностями таких понятий, как универсальное и специфические взаимодействия, перемещение, сила и работа. На этом фундаменте с помощью известных экстенсоров (см. формулу (27)) было выведено основное уравнение ОТ для ансамбля простых явлений (31), параллельно был уточнен смысл некоторых из упомянутых понятий, особенно это касается энергии. В результате такие количественные меры уравнения (26), как N4 и N5 , получили для ансамбля простых явлений конкретное выражение и толкование.
Предстоит дальнейшая расшифровка выведенного уравнения (31) и содержащихся в нем связей. Однако теперь в логику рассуждений целесообразно ввести весьма плодотворные понятия и методы, выработанные в течение последнего столетия в термодинамике [ТРП, стр.96-99].
- Термодинамика реальных процессов
- Глава I. Новая парадигма науки.
- 1. Ведущая роль парадигмы.
- 2. Определение понятия парадигмы, данное т. Куном.
- 3. Парадигма - это мировоззренческие концепции теории.
- 4. Формулировка новой парадигмы.
- 5. Методы дедукции и индукции.
- 6. Особенности метода общей теории (от).
- 7. Метод принципов и метод гипотез.
- Глава II. Анализ Вселенной.
- 1. Метод анализа.
- 2. Форма явления.
- 3. Количественные меры.
- 4. Связь между веществом и его поведением.
- 5. Основное уравнение от.
- 6. Уравнение Вселенной.
- 7. Уравнение элементарного явления.
- Глава III. Классификация миров.
- 1. Количественные уровни мироздания.
- 2. Правила проницаемости и отторжения.
- 3. Перечень миров.
- 4. Множественность форм явлений данного уровня.
- 5. Формы разного рода.
- 6. Формы разного вида.
- 7. Вариации форм данного вида.
- Глава IV. Эволюция явлений.
- 1. Метод синтеза.
- 2. Парадигма от и эволюция.
- 3. Основное уравнение эволюции от.
- 4. Принцип минимальности эволюционного шага.
- 5. Правила своеобразия и вхождения.
- 6. Множественность эволюционных рядов.
- 7. Перечень форм главного макроряда.
- Глава V. Наипростейшее макроявление.
- 1. Парен.
- 2. Абсолютный покой и ненаблюдаемость парена.
- 3. Неисчерпаемый источник вещества.
- Глава VI. Ансамбль простых явлений.
- 1. Общее уравнение ансамбля.
- 2. Мера количества вещества, или экстенсор.
- 3. Взаимодействия универсальное и специфические.
- 4. Универсальная мера экстенсивности силового взаимодействия,
- 5. Универсальная мера интенсивности силового взаимодействия, или сила.
- 6. Универсальная мера силового взаимодействия, или работа.
- 7. Мера количества поведения вещества.
- Глава VII. Первое начало от.
- 1. Вывод основного уравнения от для ансамбля простых явлений.
- 2. Виды работы.
- 3. Специфическая мера интенсивности силового
- 4. Универсальная мера количества силового поведения ансамбля, или энергия.
- 5. Контрольная поверхность, система и окружающая среда.
- 6. Внутренние и внешние степени свободы системы.
- 7. Первое начало от, или закон сохранения энергии.
- Глава VIII. Второе начало от.
- 1. Вывод уравнения.
- 2. Второе начало от, или закон сохранения количества вещества.
- 3. Особенности применения второго начала от.
- Глава iх. Третье начало от.
- 1. Вывод уравнения.
- 2. Третье начало от, или закон состояния.
- 3. Емкость системы по отношению к веществу.
- 4. Другие виды емкости системы.
- 5. Специфическая мера качества, или структуры, вещества.
- 6. Закон качества, или структуры, вещества.
- 7. Законы структуры второго и более высоких порядков.
- 1. Вывод уравнения.
- 2. Четвертое начало от, или закон взаимности (симметрии структуры).
- 3. Закон симметрии структуры второго порядка.
- 4. Законы симметрии структуры третьего и более высоких порядков.
- 5. Обобщенный закон взаимодействия, или обобщенный третий закон Ньютона.
- 6. Нелинейность дифференциальных уравнений от.
- 7. Идеальная система.
- 1. Состояние и перенос.
- 2. Вывод обобщенного дифференциального уравнения переноса.
- 3. Термодинамический поток и «сила».
- 4. Четыре частных уравнения переноса.
- 5. Пятое начало от, или закон переноса.
- 6. Проводимость и сопротивление.
- 7. Вторая специфическая мера качества, или структуры, вещества.
- 8. Второй закон качества, или структуры, вещества.
- 9. Вторые законы структуры второго и более высоких порядков.
- 10. О теореме Кюри.
- 11. Некоторые эксперименты. Подтверждающие вывод от.
- 12. Возможность сочетания потоков j и I и сил X и y.
- 13. Дифференциальное уравнение нестационарного переноса.
- 14. Особенности применения нестационарного уравнения.
- 1. Вывод уравнения.
- 2. Шестое начало от, или закон увлечения (второй симметрии).
- 3. Второй закон симметрии структуры второго порядка.
- 4. Вторые законы симметрии структуры третьего и более высоких порядков.
- 5. Третьи законы структуры и ее симметрии.
- 6. Четвертые и другие законы структуры и ее симметрии.
- 7. Еще раз об обобщенном законе взаимодействия и третьем законе Ньютона.
- 1. Совместное применение первых двух начал
- 2. Закон заряжания.
- 3. Совместное применение первых двух начал к процессам переноса.
- 4. Закон экранирования.
- 5. Седьмое начало от, или обобщенный закон заряжания.
- 6. Некоторые экспериментальные результаты.
- 7. О построении системы начал.
- Глава XIV. Идентификация простых явлений.
- 1. Истинно простое явление.
- 2. Применение правила своеобразия.
- 3. Применения начал.
- 4. Правило аддитивности.
- 5. Применение характерных свойств нано-, микро- и макромиров.
- 6. Метод подмены явлений.
- 7. Условно простое явление.
- Глава XV. Перечень простых и условно простых форм явлений.
- 1. Простое хрональное явление.
- 2. Простое метрическое явление.
- 3. Условно простое метрическое явление.
- 4. Условно простое механическое явление.
- 5. Условно простое перемещательное явление.
- 6. Условно простое кинетическое явление.
- 7. Простое ротационное явление.
- 8. Условно простое микроротационное (спиновое) явление.
- 9. Условно простое вращательное явление.
- 10. Условно простое кинетовращательное явление.
- 11. Простое вибрационное явление.
- 12. Условно простое микровибрационное (планковское) явление.
- 13. Условно простое колебательное явление.
- 14. Условно простое волновое явление.
- 15. Простое вермическое (термическое) явление.
- 16. Условно простое тепловое явление.
- 17. Простое электрическое явление.
- 18. Простое магнитное явление.
- 19. Условно простое химическое явление.
- 20. Условно простое фазовое явление.
- 21. Условно простое дислокационное явление.
- 22. Условно простое диффузионное явление.
- 23. Условно простое гидродинамическое явление.
- 24. Условно простое фильтрационное явление.
- 25. Условно простое каталитическое явление.
- 26. Условно простое ощущательное явление.
- 27. Условно простое экологическое явление.
- 28. Условно простое информационное явление.
- Глава XVI. Способы применения начал.
- 1. Статика, статодинамика, кинетика и кинетодинамика, или динамика.
- 2. Обратимый и необратимый процессы.
- 3. О совместном применении семи начал.
- 4. Закон тождественности.
- 5. Закон отношения проводимостей.
- 6. Закон отношения потоков.
- 7. Теорема интенсиалов.
- Глава XVII. Снова о свойствах парена, или абсолютного вакуума.
- 1. Среда нулевой энергии.
- 2. Абсолютно твердое тело.
- 3. Абсолютный вакуум.
- 4. О достижимости абсолютного нуля и бесконечности интенсиала.
- 5. Абсолютная система отсчета.
- 6. Среда нулевого сопротивления.
- 7. О симметрии мира.
- Глава XVIII. Хрональное явление.
- 1. Хрональное поле.
- 2. Теория хрональных источников.
- 3. Хроносфера.
- 4. Хрональные генераторы.
- 5. Хрональные аккумуляторы.
- 6. Биополе и хрональное явление.
- 7. Измерение хронального поля рамками.
- 8. Измерение хронального поля электронными приборами.
- 9. Свойства хронального наноявления, хрональное нанополе.
- 10. Свойства хронального микроявления, знак хрононов.
- 11.Свойства ротационного наноявления, взаимодействие хрононов.
- 12. Скорость хрононов.
- 13. Дифракция хрононов.
- 14. Рассеяние хрононов на хрононах.
- 15. Рассеяние хрононов на фотонах.
- 16. Рассеяние фотонов на хрононах.
- 17. Взаимное увлечение хрононов и фотонов.
- 18. Хрононы в магнитном поле.
- 19. Свойства хронального макроявления, ход реального времени.
- 20. Влияние хронального поля на электронику.
- 21. Хрональные свойства тел.
- 22. Геохрональные полосы.
- 23. Хрональные вспышки на Солнце.
- 24. Смерч, электрофонные болиды, шаровая молния.
- 25. Хрональная связь изображения с первообразом.
- 26. Землетрясения, цунами.
- 27. Фазовые превращения в материале.
- 28. Предупреждение экспериментатору.
- Глава XIX. Метрическое явление.
- 1. Механика Ньютона.
- 2. Обсуждение законов механики.
- 3. Некоторые прогнозы от.
- Глава XX. Вермическое явление.
- 1. Эволюция представлений о теплоте.
- 2. Теория теплообмена.
- 3. Классическая термодинамика Клаузиуса.
- 4. Термодинамика необратимых процессов Онзагера.
- 5. Обсуждение проблемы теплоты с позиции от.
- 6. Определение кванта вермического вещества (вермианта).
- 7. Экспериментальное определение универсального взаимодействия.
- 1. Условия нарушения третьего закона Ньютона.
- 2. Условия нарушения закона сохранения количества движения.
- 3. Возникновение внутренней силы в устройствах типа бм-28.
- 4. Устройства бм-29 и бм-30.
- 5. Устройства типа бм-33.
- 6. Устройства типа бм-34.
- 7. Устройства типа бм-35.
- 1. Техническое оснащение эксперимента.
- 2. Методика взвешивания.
- 3. Устройства типа бм-28.
- 4. Устройства типа бм-29 и бм-30.
- 5. Устройства типа бм-33 и бм-34.
- 6. Устройства типа бм-35.
- 7. Перспективы применения «движения за счет внутренних сил».
- 1. Запреты второго закона Клаузиуса.
- 2. Условия, необходимые и достаточные для осуществления
- 3. Нарушение теории фазовых превращений Томсона-Кельвина.
- 4. Термофазовые пд.
- 5. Нарушение закона Вольта.
- 6. Термоэлектрические пд.
- 7. Термоэлектрические пд, использующие новый
- 1. Термофазовые пд..
- 2. Термоэлектрические пд.
- 3. Перспективы применения вечных двигателей второго рода.
- Глава XXV. Более сложные формы явлений
- 1. Взаимодействие тел.
- 2. Термодинамическая пара, или принцип самофункционирования.
- 3. Самоорганизация, жизнь, общество, цивилизация, глобальная экология,
- Глава XXVI. Жизнь, цивилизация, экология...
- 1. Роль хронального явления в хронально-метрическом мире.
- 2. Регулирование темпа жизненных процессов.
- 3. Регулирование долголетия.
- 4. Материальность мысли.
- 5. Определение хрональной энергетики человека.
- 6. Влияние на энергетику различных факторов.
- 7. Ошибки поведения и заболевания человека.
- 8. Врачевание хрональным полем.
- 9. Условия здоровой жизни.
- 10. Искусство и хроносфера.
- 11. Экология души.
- 12. Покаяние.
- 13. Об апокалипсисе экологическом.
- 14. Внехрональные объекты.
- Глава XXVII. Аттомир, фемтомир, пикомир, макромир, мегамир...
- 1. Роль метрического явления в хронально-метрическом мире.
- 2. Парапсихология.
- 3. Левитация, хождение по воде.
- 4. Польтергейст.
- 5. Феномены из книги чудес.
- 6. Нло в прежние времена.
- 7. Современный нло и от.
- 8. Ретроспективный анализ феномена.
- 9. Живые и мертвые и пикомир.
- 10. Фемтомир и телепортация.
- 11. Добро и зло.
- 12. Что есть человек, мышление, память, сновидение,
- 13. Информация к размышлению.
- 14. Парадоксы Вселенной.
- Глава XXVIII. Новая теория информации.
- 1. Уравнение закона сохранения информэнергии.
- 2. Количество и ценность информации.
- 3. Семантика (смысловое содержание) информации.