logo search
Термодинамика Реальных Процессов

1. Состояние и перенос.

Продолжим анализ интенсиала Р , входящего в основное уравнение (31) для ансамбля простых явлений и пред­ставляющего собой специфическую меру интенсивности силового взаимодействия вещества. Это позволит обна­ружить следующее - пятое - важнейшее свойство, одно­временно присущее также всем явлениям, находящимся на более высоких уровнях эволюционного развития.

Из закона состояния должно быть ясно, что в готовом ансамбле интенсиал характеризует интенсивность, напряжен­ность, активность поведения сопряженного с интенсиалом вещества. Эта активность сохраняется в течение всего времени существования системы в данном состоянии и реализуется в ходе изменения этого состояния.

Вместе с тем ранее было установлено, что при образова­нии и распаде ансамбля интенсиал определяет интенсивность процесса, является специфическим аналогом силы. Это прямо следует из сопоставления формул (28) и (42), то есть

Рх = Р(dE/dx) ; Р = Рх(dx/dE) (94)

Поэтому интенсиал оказывает соответствующее влияние и на интенсивность, скорость переноса вещества, причем специфика заключается в том, что с каждым данным веществом сопряжен свой особый интенсиал, ответственный за перемещение только этого вещества.

Таким образом, выясняется новая роль интенсиала - служить движущей причиной переноса, распространения веще­ства. Об интенсивности этого переноса можно было бы на­глядно судить, например, по величине универсальной силы Рх , если бы ее удалось выразить через такие специфические меры, как интенсиал и экстенсор. Однако в этом вопросе имеются и определенные тонкости, ибо интенсивность поведения вещества в данном состоянии и интенсивность его перемещения в ходе изменения указанного состояния - это принципиально различные вещи. Поэтому в рассматриваемых условиях найти необходимую универсальную меру Рх , например, по формуле (94) не представляется возможным. Требуется разобраться в этих тонкостях.

Каждое основное вещество излучает и окружено веществом взаимодействия. Это значит, что основное вещество взаимо­действует одновременно со всех сторон и приобретает способ­ность перемещаться только в том случае, если разнонаправ­ленные воздействия на него не уравновешивают друг друга. Иными словами, для переноса вещества существенна не абсолютная величина активности, а равнодействующая, или разность, этих величин. Именно эта разность участвует в процессе переноса данного вещества.

Обсуждаемая разность определяется в зависимости от характера распределения интенсиала. Например, если на инте­ресующем нас участке нет скачка интенсиала, тогда разность dP берется на расстоянии dx (похожие условия изображены на рис. 2, а), где

dР = Рс - Рси (95)

При наличии скачка в данном сечении разность составляет величину δΡ (такие условия для контрольной поверхности показаны на рис. 2, в и г). Имеем

Р = Рс - Рси (96)

где Рс - значение интенсиала окружающей среды; Рп - зна­чение интенсиала на поверхности системы. Величина dP именуется перепадом интенсиала на участке dx , а δΡ - напором интенсиала на поверхности.

Следовательно, чтобы определить искомую силу Рх , надо пользоваться не формулой (94), а приравнять работы типа (28) и (91). Например, с учетом разности (95) находим

Рхdх = - dРdЕ ,

откуда

Рх = - (dР/dх)dЕ . (97)

Универсальная сила Рх , участвующая в процессе переноса, пропорциональна градиенту интенсиала dP/dx и количеству переносимого вещества dE . Знак минус говорит о том, что сила направлена в сторону уменьшения интенсиала, то есть градиент и сила смотрят в противоположные стороны.

Из сказанного должно быть ясно, что равнодействующая, суммарная сила, определяемая формулой (97) и ответственная за перенос вещества, не равна силе (94). Благодаря этой раз­нице большая активность поведения не обязательно сочета­ется с высокой интенсивностью распространения вещества, а малая активность - с низкой. Для переноса важен не уро­вень активности Р , а разность уровней dP (см. формулу (97)). Например, при высокой активности разность интенсиалов может быть небольшой, тогда интенсивность процесса переноса будет незначительной. Наоборот, вблизи нуля интенсиала, когда активность поведения невелика, разность интенсиалов может быть сравнительно высокой и процесс распространения веще­ства окажется более интенсивным, чем в первом случае.

Установленная разница между активностью поведения и интенсивностью распространения вещества имеет важное принципиальное значение для всего последующего. Она за­ставляет рассматривать отдельно эти две категории отноше­ний, а также позволяет по-новому взглянуть на полученные ранее результаты, в частности на третье начало ОТ.

Становится ясно, что интенсиал, входящий во все преды­дущие уравнения, фактически является характеристикой активности, напряженности, интенсивности поведения (состоя­ния) системы. Что касается интенсивности переноса, то этот вопрос упомянутыми уравнениями непосредственно не решает­ся. Сказанное относится и к третьему началу ОТ, которое опре­деляет только активность состояния системы.

Таким образом, мы пришли к интереснейшему выводу о не­обходимости различать состояние и перенос, который является причиной изменения состояния. Более того, анализ показывает, что в природе существуют только эти две основные категории отношений - состояние и изменение состояния. Поэтому теория приобретет необходимую законченность только в том единствен­ном случае, если она сможет с исчерпывающей полнотой описать одновременно обе указанные категории.

Детально оценивать состояние системы с помощью интен­сиала и выведенных ранее уравнений мы уже умеем. Теперь предстоит научиться то же самое проделывать с изменением состояния. Для этого надо вывести соответствующие урав­нения переноса, которые бы связали с интенсиалом количество перенесенного вещества. Очевидно, что без интенсиала и здесь обойтись невозможно, ибо именно через него определяется суммарная сила, ответственная за перенос вещества (см. фор­мулу (97)) [ТРП, стр.136-138].