logo search
Термодинамика Реальных Процессов

1. Эволюция представлений о теплоте.

В прошлом веке господствовала теория флюидов - невесомых и неуничтожимых жидкостей, перетеканием которых объяснялись различные явления природы. Такими флюидами служили теплород (с его помощью объяснялись тепловые явления), электрород, магнитная жидкость, флогистон (им объяснялись явления горения) и т.д. Например, в 1822 г. на базе теории теплорода Фурье разработал математические основы теории теплопроводности.

Последующее развитие науки привело к более глубокому пониманию всех этих явлений. В частности, после открытия закона сохранения энергии стало ясно, что теплота-теплород - это понятие энергетической природы: она способна преобразовываться в работу в эквивалентных количествах. Теория теплорода была отброшена, однако представление о теплоте как о субстрате переноса сохранилось до наших дней.

В ходе становления термодинамики вместо теплорода было развито новое понимание теплоты как хаотического движения микроскопических частиц тела. На этой основе было построено стройное здание молекулярно-кинетической теории. Применительно к газу начальные шаги в этом направлении сделаны Больцманом, Максвеллом, Гиббсом и некоторыми другими авторами. Согласно этим взглядам, теплота представляет собой кинетическую энергию хаотического движения микрочастиц. Для количественного определения кинетического движения были привлечены такие понятия статистической физики, как случайность, вероятность, флуктуация и т.п.; они легли в основу так называемой статистической термодинамики. Кинетическое толкование теплового явления нашло завершающее развитие в квантовой механике.

Наконец, в 1950 г. я предложил новый подход при изучении тепловых явлений, с которого фактически и начиналась общая теория (ОТ) (см. параграфы 15 и 16 гл. XV). Согласно этому подходу, в природе существует некое простое вермическое вещество (термический заряд), которое с качественной и коли чественной стороны однозначно характеризует тепловое явление во всех его проявлениях на любом уровне картины мироздания. Истинно простое вермическое явление подчиняется всем законам ОТ. Например, переход вермического вещества через контрольную поверхность сопровождается совершением работы и изменением энергии системы (первое начало). Количество вермического вещества в отличие от энтропии подчиняется закону сохранения (второе начало). Вермическое явление вследствие наличия универсального взаимодействия испытывает органическую связь со всеми остальными явлениями (третье и четвертое начала). Вермическое вещество способно распространяться (пятое и шестое начала), а также аккумулироваться и экранироваться в системе (седьмое начало) и т.д. [ТРП, стр.402-403].