6.4. Аналогия, обобщение
Аналогия – довольно широкое понятие, означающее существование не тождества (абсолютного совпадения), а всего лишь некоторой «похожести» двух (или более) предметов, явлений, закономерностей, формализованных законов и т.п. По словам М. В. Ломоносова «уподобление рождает пространные и притом прекрасные идеи».
Ценность аналогии состоит не просто в установлении этого сходства (акта «уподобления»), а в том, что это сходство может натолкнуть исследователя на формирование догадок, «придумок», наконец, научных гипотез, абдуктивных выводов (см. предыдущий раздел). Эти «выводы по аналогии», конечно, не являются непреложными, как силлогизмы в дедуктивном методе, – они всего лишь вероятны и требуют обязательных дальнейших проверок. Это догадки, некая техника усмотрения общности, симметрии, изоморфизма или, хотя бы, гомоморфизма (будем считать, что эти термины читателю знакомы) во внешне разнородных явлениях. Иными словами, аналогия – тоже один из способов обобщения и систематизации фактов.
Вот ряд иллюстраций для более полного понимания этого метода, принадлежащих бесспорным классикам науки.
● «В физике все наши знания основываются только на аналогии: если бы сходство следствий не дало нам право заключить о тождестве их причин, что сталось бы с этой наукой?» (Дени Дидро. Цит. по: Уемов А. И. Аналогия в практике научного исследования. М.: Наука, 1970. С. 4).
● Исаак Ньютон широко использовал аналогию, которую он включал во «второе правило философствования»: «Поскольку возможно, должно приписывать те же причины, того же рода проявлениям природы» (Ньютон И. Математические начала натуральной философии. М.: Наука, 1989. С. 502). То есть, надо стремиться обнаруживать сходные причины у сходных явлений.
● Английский философ, химик и общественный деятель Джозеф Пристли (1733-1804) воспользовался аналогией между горением и дыханием и благодаря этому провел эксперименты, показавшие, что зеленые растения восстанавливают воздух, «израсходованный» в процессе дыхания животных или при горении свечи.
● Русский биолог Илья Ильич Мечников (1845-1916), наблюдая за личинками морской звезды, сделал вывод о защитной функции фагоцитов в организме животных и человека.
● Австрийский и чешский натуралист Грегор Иоганн Мендель (1822-1884) путем аналогии вывел следствия, приведшие к концепции доминантных и рецессивных признаков у всех живых организмов. Наблюдения были выполнены над окраской цветов гороха и морщинистостью его семян, но выводы были сделаны в отношении общих закономерностей передачи наследственных признаков.
● Готфрид Вильгельм Лейбниц уподобил процесс логического доказательства вычислительным операциям в математике.
В точных формализованных науках (в физике, физической химии и др.) многие количественные закономерности (формулы) имеют одинаковую структуру, отличаясь только физическим смыслом аргументов, функций и параметров. Так, например, Резерфорд и Содди, установив на опыте, что «активность» препарата ThX (сейчас установлено, что это изотоп радия-224), т.е. интенсивность его излучения, регистрируемая инструментально, соответствует убывающей геометрической прогрессии. Позже было показано уже другими исследователями, в частности, Швейдлером, что радиоактивный распад подчиняется закономерностям физической статистики и характеризуется следующими взаимоотношениями:
A/A0 = N/N0 = I/I0 = exp (-λt),
где A – абсолютная активность, равная числу актов распада радиоактивных атомов в единицу времени; N – число радиоактивных атомов в исследуемом образце; I – инструментально определяемая активность, представляющая собой некоторую известную и постоянную долю числа распавшихся атомов (I ~ A); λ – параметр, характеризующий распад – вероятность распада атома в единицу времени; t – время; индекс «ноль» соответствует моменту t = 0. Закономерности типа геометрической прогрессии часто встречаются в естественнонаучных теориях, они структурно аналогичны. Например, в разделе ядерной физики и радиохимии, относящемуся к взаимодействию ионизирующих излучений с веществом, также фигурирует формула, имеющая вид геометрической прогрессии:
Ф/Ф0 = exp(-µl),
где Ф – поток излучения; µ – некий интенсивный параметр; l – расстояние от поверхности облучаемого тела до уровня, соответствующего значению Ф (изначальный поток Ф0 соответствует l = l0):
Ф0 l0
Ф l
Можно, исходя только из полной аналогии рассматриваемых формул, дать вероятностное определение параметра µ, если толкование параметра λ считается понятным. Вот это сопоставление, сведенное в таблицу.
Таблица 3
- Очерк методологии естественных наук
- Предисловие
- Глава 1. Наука как социокультурный феномен
- 1.1. Наука и миф
- 1.2. Наука и религия
- 1.3. Наука и искусство
- 1.4. Наука и игра
- Глава 2. Традиционное строение науки. Классификация наук. Иерархия, связи и пересечения научного знания
- Глава 3. Естественные науки и проблемы межпредметных взаимоотношений
- Глава 4. Проблема редукционизма в естествознании
- Глава 5. Взаимоотношение науки и философии. Элементы методологии научного исследования
- 5.1. Методы эмпирического исследования
- 5.1.1. Наблюдение
- 5.1.2. Эксперимент, опыт
- 5.1.3. Сравнение. Измерение. Классификация
- 5.2. Методы теоретического познания
- 5.2.1. Формализация
- 5.2.2. Аксиоматический метод
- 5.2.3. Гипотетико-дедуктивный метод
- Глава 6. Общелогические методы и приемы исследования
- 6.1. Анализ и синтез
- 6.2. Абстрагирование и идеализация
- 6.3. Дедукция, индукция, абдукция
- 6.4. Аналогия, обобщение
- Аналогия между радиоактивным распадом и ослаблением потока ионизирующего излучения
- 6.5. Статистический метод
- 6.6. Системный метод
- 6.7. Моделирование
- Глава 7. Объяснение и понимание
- Глава 8. Наука и антиподы
- Рекомендуемая литература
- Оглавление