Модель внутреннего строения Солнца. Источники солнечной энергии.
Рисунок 57. Схема строения солнца.
Внешние слои Солнца (атмосферы) непосредственно доступны наблюдениям. Поэтому теоретические модели их строения проверены. Модели внутреннего строения в основном теоретические. Они получены на экстраполяции физических условий, на поверхности и характеристиках: размеры, масса, светимость, вращение, химический состав.
По геологическим данным возраст Солнца около 5 млрд лет. Последние 3 млрд лет светимость его мало изменилась. За эти 3 млрд. лет Солнце излучило 3,6*1044 Дж, то есть каждый килограмм массы Солнца выделил ~1,8*1013 Дж энергии. Такое количество энергии, как показали расчеты, не могут обеспечить химические процессы и гравитация. (гравитационная энергия Солнца = 4*1041Дж).
Единственным возможным, посовременным представлением, источником энергии может быть ядерная энергия. Если на Солнце идут ядерные реакции и вначале все вещество – водород, то при современной светимости Солнца ядерной энергии хватило бы на 170 млрд. лет. Для протекания ядерных реакций нужна температура порядка десяти млн. градусов. Следовательно, из высокой светимости следует высокая температура внутри Солнца. По наблюдениям в фотосфере температура с глубиной растет с градиентом 20 К на 1 км. Это дает в центре ~1,4*106 К. Температуру можно оценить по условию гидростатического равновесия, считая солнечное вещество идеальным газом: газовое давление уравновешивают силы тяготения. Получается ≈ 14*106К в центре, что в 3 раза выше средней.
Наиболее существенной в недрах Солнца является протон – протонная реакция. Она начинается с крайне редкого события – β – распада одного из двух протонов в момент особенно тесного их сближения (14 * 109 лет).
При β – распаде протон превращается в нейтрон с испусканием позитрона и нейтрино. Объединяясь со вторым протоном, нейтрон дает ядро тяжелого водорода – дейтерия. Для каждой пары протонов процесс, в среднем осуществляется за 14 миллиардов лет, что и определяет медленность термоядерных реакций на Солнце и общую протяженность его эволюции. Дальнейшие ядерные превращения протекают значительно быстрее. Возможны несколько вариантов, из которых чаще всего должны происходить столкновения дейтерия с третьим протоном и образование ядер изотопа гелия которые, объединяясь и испуская два протона, дают ядро обычного гелия.
Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете, она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит название углеродного цикла.
При термоядерных реакциях в недрах Солнца выделяется в виде жестких гамма-квантов. При движении к поверхности они многократно переизлучаются, дробятся на кванты меньшей энергии. Процесс занимает миллионы лет. Из одного γ – кванта образуется несколько миллионов квантов видимого света, которые и покидают поверхность Солнца.
При термоядерных реакциях выделятся нейтрино. Из –за ничтожно малой массы и отсутствия электрического заряда нейтрино очень слабо взаимодействует с веществом. Почти свободно проходит Солнце и со скоростью света вылетает в межпланетное пространство. Его регистрация сложна, но нейтрино может жать важную информацию о внутреннем строении и условиях внутри Солнца и звезд.
Рисунок 58. Схематический разрез Солнца и его
атмосферы.
- Кузьмичева а.Е., Карман а.Г. Физика солнечной системы учебно-методическое пособие
- Введение
- Солнечная система и некоторые фундаментальныевопросы физики. Проблема интеграции
- 1.1 Интеграция физики и астрономии при подготовке бакалавра специальности «Физика»
- 1.3 Фундаментальные взаимодействия
- Сильное взаимодействие.
- Электромагнитное взаимодействие.
- Слабое взаимодействие.
- Гравитационное взаимодействие.
- 1.4. Динамический хаос, самоорганизация в космосе
- 1.4.1.Переход беспорядок – порядок. Интегрируемые и неинтегрируемые системы
- Коллективные эффекты (синергетика во Вселенной)
- Проблема времени
- 1.5.1. Космический хаос и направление времени
- 1.5.2. Понятие времени в науке и обучении
- 2. Лекционный комплекс
- 2.1.Тема 1. Лекция 1,2. Введение
- Лекция 1. Предмет астрономии
- Возникновение и развитие астрономии
- 2.1.2. Лекция 2.Структура астрономии
- 2.2. Тема 2. Лекции 3,4. Основы сферической и практической астрономии.
- Лекция 3. Небесная сфера.
- 6. Явления, связанные с суточным вращением небесной сферы (рис 8)
- 2.3.Тема 3. Лекция 5. Движение Земли вокруг Солнца. Видимое годичное движение Солнца.
- 2.3.1.Лекция 5. Движение Земли вокруг Солнца. Видимое годичное движение Солнца
- Созвездия зодиака
- Контрольные вопросы:
- Тема 4. Лекция 6. Проблема измерения времени. Календарь
- 2.4.1. Лекция 6. Проблема измерения времени. Календарь.
- Звездное время
- Уравнение времени
- Системы счета времени
- Секунда.
- Система счисления времени в астрономии. Календарь
- Начало отсчета годов
- Контрольные вопросы:
- Рекомендуемые задания на сро по теме 4:
- Тема 5. Лекции №7, 8. Развитие взглядов
- Лекция 7. Солнечная система
- Конфигурации планет
- Периоды обращения планет
- Законы Кеплера
- 2.5.2. Лекция №8. Определение характеристик планет Солнечной системы.
- Астрономическая единица
- Размеры и формы светил
- Радиус Земли
- Контрольные вопросы:
- 2.6.2. Лекция 10. Движение Луны. Солнечные и лунные затмения
- Примечание:
- Затмения
- Контрольные вопросы:
- Часть 2. Законы и.Кеплера
- Контрольные вопросы:
- Обобщенные законы Кеплера.
- Контрольные вопросы:
- Рекомендуемые задания на срс:
- 2.7.3. Лекция 13. Элементы эллиптических орбит. Элементы теории возмущений
- Часть 1. Характеристики эллиптических орбит.
- Часть 2. Возмущение эллиптических орбит.
- Задача многих тел. Возмущенное движение планет
- Задача трех тел. Понятие о возмущающей силе
- Контрольные вопросы:
- Рекомендуемые задания на срс:
- Лекция 14. Определение масс тел Солнечной системы. Проявление сил тяготения на Земле
- Часть 1. Определение масс тел Солнечной системы.
- Часть 2. Приливы и отливы.
- 2.8.Лекция №15 Тема 8. Инструменты и методы астрофизики. Телескопы.
- Лекция №15. Инструменты и методы астрофизики. Телескопы.
- Часть 1. Астрономические приборы. Глаз как приемник излучения
- Телескопы.
- Оптические телескопы.
- Основные назначения телескопа:
- Основные характеристики телескопа:
- Фотографии телескопов
- Менисковый телескоп
- Ход лучей в оптических телескопах.
- Радиотелескопы.
- Телескопы инфракрасного излучения.
- Рентгеновские (ри) – телескопы
- Гамма – телескопы.
- Фотографии телескопов
- Контрольные вопросы:
- Рекомендуемые задания на сро по теме 8:
- 2.9.Тема 9. Лекция 16. Основы астрофотометрии.
- Физические основы:
- 2.9.1. Лекция 16. Основы астрофотометрии.
- Часть 1. Электромагнитное излучение небесных тел Шкала электромагнитных волн.
- Блеск и яркость. Видимые и абсолютные звездные величины.
- Абсолютная звездная величина
- Фотометрические системы. Показатель цвета.
- Часть 2. Спектральный анализ. Методы определения температуры.
- Спектральные приборы
- – Наиболее вероятная скорость. (22)
- Контрольные вопросы:
- Рекомендуемые задания на сро по теме 9:
- 2.10.Лекция№17 - 20 . Тема 10. Элементы Солнечной системы.
- Лекция 17. Физика Солнца.
- 1. Общие сведения о Солнце
- 2. Магнитное поле Солнца.
- Модель внутреннего строения Солнца. Источники солнечной энергии.
- 4. Солнечная атмосфера
- 2.10.2. Лекция №18 Большие планеты Солнечной системы
- 2. Земля.
- 3. Некоторые особенности планет. Меркурий
- Венера:
- Сатурн:
- 2. Кометы.
- Метеоры и метеорные потоки. Метеориты.
- 10 Октября 1933 г.
- Метеориты.
- Контрольные вопросы
- Рекомендуемые темы на сро:
- Лекция 20.Современные исследования Солнечной системы с помощью космических аппаратов.
- 21 Июля 1969 г."Аполлон-11"образцы лунного грунта.
- Количество полетов