35. Современные космологические модели Вселенной.
Космология – наука, изучающая строение и эволюцию Вселенной.
Вселенная – весь существующий материальный мир.
Метагалактика – упорядоченная система галактик.
В основе космологических моделей Вселенной лежат определённые мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.
Нет на сегодняшний день такой парадигмы, которая бы объяснила происхождениее Вселенной ( Теория Большого взрыва, стационарность)
В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас.
Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.
Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.
Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.
В том же 1917 г. голландский астроном Виллем де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае «пустой» Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга и растворить всю систему. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.
В 1922 г. российский математик и геофизик Л. А. Фридман о (бросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы.
Решение уравнений А. А. Фридмана, допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния. Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния. По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т. е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.
Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных галактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.
В 1929 г. американский астроном Э. П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,— система галактик расширяется.
3) в
- 1 .Предмет и цели естествознания.
- 31.Концепция абсолютного пространства и времени в классической физике
- 2 .Возникновение естествознания и этапы его развития
- 32. Концепция относительности пространства – времени в релятивистской физике.
- 3. Классический и неклассический периоды естествознания, их особенности.
- 33. Причинная концепция времени. Проблема необратимости времени.
- 4.Научные революции, их структура и роль в развитии научного познания.
- 34.Классическая и современная космология: концепции стационарной и нестационарной Вселенной
- 5. Глобальные революции в науке и изменение научной картины мира.
- 35. Современные космологические модели Вселенной.
- 7. Место естествознания в духовной культуре общества.
- 37. Многообразия мира галактик, их строение и виды.
- 8. Естественно-научная и гуманитарная культуры, их взаимосвязь.
- 38. Солнечная система, её строение и особенности.
- 9. Естествознание и нравственность. Этика наук.
- Этика научного сообщества
- Взаимоотношение общества и науки
- 39. Строение и эволюция Земли.
- 10. Фундаментальные и прикладные науки. Классификация наук.
- 40. Биология, её предмет, структура и основные этапы развития.
- 11. Особенности и структура научного знания. Критерии научности знания.
- 41. Жизнь как предмет биологии. Сущность живого, его основные признаки.
- 12. Эмпирический и теоретический уровни научного познания, их взаимосвязь и особенности.
- 42. Структурные уровни организации живой материи.
- 13. Методы исследования на эмпирическом уровне научного познания.
- 43. Естественно-научные гипотезы происхождения жизни: креционизм и эволюционизм.
- 14. Методы исследования на теоретическом уровне научного познания.
- 44. Концепция эволюции в биологии. Генетика и эволюционная гипотеза.
- 15. Теория как форма организации научного знания. Структура научной теории.
- 45. Предмет генетики, её законы и основные этапы развития.
- 46. Генетическая информация и воспроизводство жизни. Волновая генетика.
- 17. Структурные уровни организации материи. Иерархия структур в микро-, макро- и мегамире.
- Микромир
- Макромир
- 47. Генетика и практика. Социальные и этические проблемы генной инженерии.
- 18. Классическая механика, её фундаментальные законы, принципы и понятия.
- 48. Биосфера: понятия и основные компоненты. Биосфера как тип организации целого.
- 19. Уровни развития химических знаний.
- 49. Концепция биосферы в. И. Вернадского.
- 20. Вещество и поле как виды материи в классической науке.
- 50. Концепция ноосферы в современном естествознании. Переход от биосферы к ноосфере.
- 3) А фридман
- 52. Единство биосферы, человека и космоса.
- 23. Идея структурности материи. Концепция атомизма в классической науке.
- 53 Этногенез и биосфера земли.
- 24. Элементарные частицы, их свойства и классификация.
- 54. Человек как предмет исследования в естественно-научной антропологии
- 25.Кварковая модель атома
- 55. Генетика человека. Наследственность и поведение.
- 26. Фундаментальные взаимодействия в природе.
- 56. Человек как биологический вид.
- 27. Физический вакуум.
- 57. Проблема происхождения человека и его эволюция в современной науке.
- 28. Концепция необратимости и термодинамика.
- 58. Организм человека как целое, его системная организация.
- 29. Порядок и беспорядок во Вселенной. Синергетика.
- 59. Здоровье человека: норма и патология. Проблема психической и физической дегенерации.
- 30. Понятие пространства и времени. Своеобразие свойств и времени на разных уровнях организации материи.
- 60. Социально-этические проблемы генетики человека и медицины
- 51. Концепции экологии
- 21. Рождение и развитие квантовой теории 22. Концепция неопределенности квантовой механики
- 6. Естественно-научная картина мира. Механическая, электромагнитная и современная научные картины мира.