1.2. Начало научной космологии. Формирование классической космологической модели.
Основателем научной космологии считается Николай Коперник, который поместил Солнце в центр Вселенной, и низвел Землю до положения рядовой планеты Солнечной системы. Конечно, он был весьма далек от правильного понимания устройства мира. Так, по его убеждению, за орбитами пяти известных в то время планет располагалась сфера неподвижных - звезд. Звезды на этой сфере считались равноудаленными от Солнца, а природа их была неясной. Коперник не видел в них тел, подобных Солнцу, и, будучи служителем церкви, склонялся к мнению, что за сферой неподвижных звезд находится «эмпирей», или «жилище блаженных» - обитель сверхъестественных тел и существ.
В одном Коперник был твердо уверен - радиус сферы неподвижных звезд должен был быть очень велик. Иначе было бы трудно объяснять, почему с движущейся вокруг Солнца Земли звезды кажутся неподвижными.
Поставьте перед лицом указательный палец и посмотрите на него попеременно то правым, то левым глазом - палец будет смещаться на фоне более далеких предметов, например, стены. Такое кажущееся смещение предмета при изменении позиции наблюдателя называется параллактическим смещением. Расстояние между крайними точками наблюдения называется базисом. Чем больше базис, тем больше и параллактическое смещение. Чем дальше от нас наблюдаемый предмет, тем меньше параллактическое смещение (отодвиньте палец от лица и вы легко в этом убедитесь).
Хотя расстояние от Земли до Солнца во времена Коперника в точности не было известно, многие факты говорили о том, что оно весьма велико. Казалось бы, при этом звезды должны описывать на небе маленькие окружности - своеобразное отражение действительного обращения Земли вокруг Солнца. Но такие параллактические смещения звезд явно отсутствовали, из чего Коперник и сделал вывод о колоссальных размерах сферы неподвижных звезд.
Вселенная по Копернику - мир в скорлупе. В этой модели легко найти немало пережитков средневекового мировоззрения. Но прошло всего несколько десятилетий, и Джордано Бруно разбил коперниканскую «скорлупу» неподвижных звезд.
Д. Бруно считал звезды далекими солнцами, согревающими бесчисленные планеты других планетных систем. Бруно считал глупцом того, кто мог думать, что могучие и великолепные мировые системы, заключающиеся в беспредельном пространстве, лишены живых существ. Так прозвучала беспредельно смелая по тем временам мысль о пространственной бесконечности Вселенной. Он считал, что Вселенная бесконечна, что существует бесчисленное число миров, подобных миру Земли. В свете учения Бруно теория Коперника снижает свой ранг: она оказывается не теорией Вселенной, а теорией лишь одной из множества планетных систем Вселенной и, возможно, не самой выдающейся такой системы. Идеи Бруно намного обогнали его век. Но он не мог привести ни одного факта, который бы подтверждал его космологию - космологию бесконечной, вечной и населенной Вселенной.
Прошло всего десятилетие, и Галилео Галилей в изобретенный им телескоп увидел в небе то, что до сих пор оставалось скрытым для невооруженного глаза. Горы на Луне наглядно доказывали, что Луна и в самом деле есть мир, похожий на Землю. Спутники Юпитера, кружащиеся вокруг величайшей из планет, походили на наглядное подобие Солнечной системы. Смена фаз Венеры не оставляла сомнений в том, что эта освещенная Солнцем планета действительно обращается вокруг него. Наконец, множество невидимых глазом звезд и особенно удивительная звездная россыпь, составляющая Млечный путь, - разве все это не подтверждало учение Бруно о бесчисленных солнцах и землях? С другой стороны, темные пятна, увиденные Галилеем на Солнце, опровергали учение Аристотеля и других древних философов о неприкосновенной чистоте небес. Небесные тела оказались похожими на Землю, и это сходство земного и небесного заставляло постепенно отказаться от ошибочного представления о Солнце как центре всего Мироздания.
Современник и друг Галилея, Иоганн Кеплер, уточнил законы движения планет, а великий Исаак Ньютон доказал, что все тела во Вселенной независимо от размеров, химического состава, строения и других свойств взаимно тяготеют друг к другу. Космология Ньютона вместе с успехами астрономии XVIII и XIX веков определила то мировоззрение, которое иногда называют классическим. Оно стало итогом начального этапа развития научной космологии.
Эта классическая модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами и играет пассивную роль вместилища для этих тел. Исчезни вдруг все эти тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит жизненный длительный путь. И на смену погибшим, точнее, погасшим звездам вспыхивают новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде эта классическая модель господствовала в науке вплоть до начала XX века.
Бесконечности Вселенной в пространстве гармонично соответствовала ее вечность во времени. Ныне, миллиард лет назад, миллиарды лет в будущем она останется, в сущности, одной и той же. Неизменность космоса как бы подчеркивала бренность, непостоянство всего земного.
Однако в данной модели Вселенной было несколько недостатков. Закон всемирного тяготения объяснял центростремительное ускорение планет, но не говорил, откуда взялось стремление планет, а также любых материальных тел двигаться равномерно и прямолинейно. Для объяснения инерциального движения пришлось допустить существование в ней божественного «первотолчка», приведшего в движение все материальные тела. Кроме того, для коррекции орбит космических тел допускалось вмешательство Бога. Таким образом, классическая полицентрическая модель Вселенной лишь частично носила научный характер, она не смогла дать научного объяснения происхождения Вселенной, и поэтому была заменена другими моделями.
- 1. Единство естественнонаучного и гуманитарного компонентов культуры личности
- 2. Исходная характеристика научного знания. Обобщенность научного знания.
- 3. Идеальная модель как одна из форм задания объекта в теоретическом естествознании. Развитие модельных представлений об атоме
- 4. Идеализация как одна из форм задания объекта в теоретическом естествознании.
- (Уравнение Ван-дер-Ваальса).
- 5. Проблема обоснования границ научного знания. Сущность и условия применения процедуры обоснования внутри естествознания. Основные вненаучные способы обоснования принимаемых решений.
- 6. Доказанность научного знания
- 7. Методологические регулятивы научного познания
- 8. Понятие метода, методологии и методики
- 9. Наблюдение и специфика его применения в современном естествознании
- 10. Метод эксперимента в современном естествознании
- 11. Гипотеза как форма развития естествознания
- 14. Интеграция фундаментальных и прикладных исследований
- 13. Преемственность в развитии научных теорий
- 12. Математизация естествознания
- 15. Единство эволюционного и революционного путей развития естествознания. Понятие парадигмы. Критический анализ концепции т.Куна
- 19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
- 21. Дальнодействие, близкодейтвие. Концепция силового поля как посредника при передаче взаимодействия. Квантованное поле. Понятие физического вакуума.
- 22. Гравитационное взаимодействие
- 23. Электромагнитное взаимодействие
- (Закон Кулона)
- 24. Сильное взаимодействие
- 25. Слабое взаимодействие
- 26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- 27. Динамические и статистические закономерности в природе. Классическая и квантовая статистика. Лапласовский детерминизм. Фазовые пространства, цель их ввода в физическое познание.
- 28. Понятие состояния в классической и квантовой физике
- 29. Роль законов сохранения в развитии физического знания. Законы сохранения и принципы симметрии. Правила отбора физики элементарных частиц
- 32. Химические системы
- 50. Рациональность. Суть научной рациональности.
- 51. Классический тип научной рациональности
- 45. Антропный принцип
- Оглавление
- Введение
- Становление космологии
- 1.1. Древняя космология
- 1.2. Начало научной космологии. Формирование классической космологической модели.
- 2. Космологические парадоксы
- 2.1. Фотометрический парадокс
- 2.2. Гравитационный парадокс
- 2.3. Термодинамический парадокс
- 2.4. Неевклидовы геометрии
- Особенности современной космологии
- 3.1 Космологические данные
- 3.2 Релятивистская модель Вселенной
- 3.3 Модель расширяющейся Вселенной
- 4 Эволюция Вселенной
- 4.1 Большой взрыв: Инфляционная модель
- 4.2 Ранний этап эволюции Вселенной
- 5 Острова Вселенной
- 5.1 Многообразие форм звёздных систем
- 5.2 Группы и скопления галактик
- 5.3 Эволюция галактик
- 5.4 Радиоизлучение и активность галактик
- 5.5 Галактика Млечный путь
- 5.6 Метагалактика
- 6 Звезды и их эволюция.
- 6.1 Классификация звезд
- 6.2 Эволюция звезд
- 6.3 Солнце - самая дорогая нам звезда
- 7. Солнечная система
- 7.1 Зарождение
- 7.2 Строение Солнечной системы
- 7.3 Кометы
- 7.4 Планета Земля
- 7.5. Геодинамические процессы
- 8. Антропный принцип и эволюция
- Проблема поиска жизни во Вселенной
- Содержание
- Введение
- 1 Учение о составе вещества
- 1.1 Химический элемент
- 2.2 Химическое соединение
- 2.3 Химические связи
- 3 Химические процессы
- 1.Реакция соединения.
- 2.Реакция разложения
- 3.Реакция замещения
- 4. Реакция обмена
- 4 Структурная химия
- 5 Эволюционные проблемы в химии.
- 7 Контрольные вопросы
- 8 Тестовые задания
- 10 Рекомендуемая литература
- 1 Варианты контрольных работ
- 4.2 Какой из ниже приведенных процессов, не относится к однофакторному эксперименту:
- 4.2 К какому взаимодействию относится изотопическая инвариантность?
- 4.3 Основная задача механики состоит в том, чтобы:
- 4.2 Основное (истинное) стационарное состояние атома, это состояние:
- 4.3 Полное описание механического движения в механике Галилея-Ньютона задается:
- 4.2 Идеальная модель атома Бора, постулирует:
- 4.3 Выберите правильное высказывание:
- 2 Распределение вариантов контрольных работ по номерам зачетных книжек и учебным годам
- 3 Контрольные вопросы к зачету и экзамену
- Список использованных источников
- Возникновение живой материи и особенности ее организации
- 1.1 Возникновение живой материи
- Свойства жизни
- 3. Уровни организации жизни
- 3.1 Молекулярно-генетический уровень.
- 3.2 Клеточный уровень
- 3.2.1 Химическая организация клеток
- Линейная днк