5.5 Галактика Млечный путь
Наша галактическая система — рядовая звездная система. На небе в ясную безлунную ночь хорошо видна яркая белесоватая полоса — Млечный Путь. Он простирается (при вечерних наблюдениях) через созвездия Скорпиона, Стрельца, Орла и дальше вверх к Лебедю, Цефее и Кассиопее. При утренних наблюдениях можно проследить его другую ветвь: по созвездиям Персея, Возничего, Тельца, Близнецов, Ориона и Большого Пса. В Южном полушарии он проходит через созвездия Парусов, Киля, Южного Креста и Центавра. Таким образом, Млечный Путь образует на небе полный круг. Его светлое сияние происходит в основном из-за свечения бесчисленного количества слабых звезд.
Представление о том, что Млечный Путь состоит из огромного числа звезд, восходит еще к Демокриту. Его догадку подтвердил Г. Галилей с помощью своего телескопа. У. Гершель обратил внимание, что в направлении созвездия Геркулеса звезды как бы раздвигаются, а на противоположной стороне — сближаются: подобное впечатление получается при движении по дороге, по обеим сторонам которой высажены деревья. Таким образом, Солнце движется по отношению к ближайшим звездам, и расстояния до них неодинаковы.
Основателем звездной астрономии считается У. Гершель. Из своих наблюдений он заключил, что протяженность Галактики порядка 5800 св. лет, а ее толщина — 1100 св. лет. Гершель не знал о существовании межзвездного газа, поглощающего излучение звезд, в результате чего размеры Галактики кажутся нам уменьшенными в 15 раз. В XX в. были определены форма и масштабы этой гигантской звездной системы и установлено место, которое занимает в ней наше Солнце. Солнечная система находится между спиральными рукавами, один из которых виден в направлении на центр Галактики в созвездии Стрельца, а другой — в противоположном направлении, в созвездии Персея. Именно в направлении на созвездие Стрельца Млечный Путь выглядит наиболее ярко.
Галактика — это гигантская звездная система, состоящая почти из 200 млрд звезд, и Солнце — одна из них. Вообще галактики — огромные вращающиеся звездные системы. Они различаются и по внешнему виду, и по характеристикам. Помимо звезд, в галактики входит межзвездное вещество: газ, пыль, частицы космических лучей. Считают, что некоторые галактики по ряду свойств и по внешнему виду похожи на нашу Галактику, называемую Млечный Путь. Из их фотографий можно заключить, что это достаточно тонкий диск с утолщением в центре (рис. 20). В этом месте Галактика простирается на область с радиусом в 25 кпк и толщиной около 2 кпк, на расстоянии в 10 кпк от центра находится Солнечная система. Она движется вокруг центра Галактики почти по окружности со скоростью 240 км/с. Орбита Солнца лежит в плоскости Галактики, один оборот длится 240 млн лет. Maccа центральной части Галактики порядка 3 • 1041 кг. Предполагают, что большая масса рассредоточена на периферии Галактики, в области радиусом около 100 кпк. Многие звезды образуют группы — скопления. Эволюционные процессы связаны с такими характеристиками звезд, как возраст, химический состав, характеристики движений и пространственное расположение.
Возраст звезд находится в достаточно большом диапазоне значений: от сотен тысяч лет (возраст самых молодых звезд) до 15 млрд лет (возраст Вселенной). Есть звезды, образующиеся на наших глазах и находящиеся в протозвездной стадии.
Все звезды, по терминологии Бааде, предложенной в 1944 г., принято называть звездным населением. В плоскости Галактики расположены звезды молодые и среднего возраста — население I, или диска (звезды Главной последовательности спектральных классов О и В — самые молодые и горячие, G, К, М — карлики). Это рассеянные звездные скопления, горячие звезды — гиганты и сверхгиганты, сверхновые звезды, долгопериодические цефеиды, молекулярные облака, светлые и темные туманности. Возраст их порядка 107— 108 лет, они недавно образовались из межзвездного газа, поэтому находятся в плоскости вблизи него. Сейчас межзвездного газа по массе немного—около 5 % общей массы, и он сконцентрирован в спиральных рукавах. Наше Солнце находится посередине между двумя спиральными рукавами (см. рис. 4). Самые старые составляют население II, или гало (шаровые скопления, содержащие до 1 млн звезд; рассеянные скопления, содержащие лишь 100-1000 звезд; ( субкарлики II переменные типа RR Лиры); к старым относятся красные карлики, красные гиганты и цефеиды. Их возраст порядка 10 10 лет.
Старые объекты находятся ближе к центру Галактики.
100 000 св. лет а б
Рис. 4. Положение Солнечной системы в Галактике (отмечено крестиком): а — вид сверху; б — вид сбоку.
Промежуточную по возрасту группу занимают звезды, заполняющие диск Галактики толщиной около 1 кпк. Это новые звезды, планетарные туманности, яркие красные гиганты, расположенные в ядре Галактики.
Сравнительно молодые звезды верхней части Главной последовательности входят обычно в состав рассеянных скоплений. Непосредственному наблюдению доступны около 1 000 таких скоплений, и все они принадлежат диску. Кроме рассеянных скоплений, в Галактике более 100 шаровых скоплений. Они получили такое наименование потому, что в центре скопления блеск близко расположенных звезд сливается в яркий фон. Ближайшее шаровое скопление можно видеть в созвездии Центавра даже невооруженным глазом в виде размытого пятна. Шаровые скопления очень устойчивы, они образуют сферическую подсистему. В них много бело-голубых звезд и мало красных гигантов. Многие из шаровых скоплений являются источниками мощного рентгеновского излучения. Это объясняют аккрецией (падением) межзвездного газа на черные дыры, находящиеся, по мнению некоторых ученых, в центре шаровых скоплений.
Межзвездный газ относят к населению диска, поскольку по своему химическому составу, расположению и характеру движения он ближе всего к молодым звездам. В спектрах были открыты линии межзвездного натрия, калия, железа, титана и водорода (по косвенным данным, например, потому, что водород образует вместе с атомом углерода молекулу СН). Измерения взаимных положений компонентов в спектрах позволили составить схемы обращения облаков вокруг центра Галактики. В 1951 г. советские астрономы Г. А. Шайн и В. Ф. Газе при фотографировании неба сквозь светофильтры, выделяющие отдельные эмиссионные линии водородной серии Бальмера, открыли более 200 туманностей, которых не видно на обычных фотографиях. Сейчас установлено, что средняя плотность водорода в межзвездной среде порядка 0,1 частицы в 1 см3, тогда как в плотных облаках — до нескольких тысяч. Соотношение водорода и гелия в межзвездной среде оценивается как 9:1. В спиральных рукавах плотность водорода примерно на порядок выше, чем между рукавами.
Межзвездная среда ослабляет свет звезд примерно на 0,6 звездной величины на 1 пк, как доказал в 1847 г. русский астроном В. Я. Струве, а советский ученый П. П. Паренаго вывел формулу учета этого ослабления. Межзвездная среда похожа на пыль, концентрация которой в 100 раз меньше газовой. Ее частицы напоминают ледяные загрязненные кристаллики с Т ≈ 17 К. Газопылевые облака поглощают свет далеких звезд, при этом их поглощательная способность пропорциональна 1/λ. Например, ядро Галактики удается наблюдать только в инфракрасном и радиодиапазонах. В центре Галактики обнаружен мощный источник радиоизлучения Стрелец А. В нем предполагают наличие массивной черной дыры, окруженной газовым диском диаметром около 1 млрд км. Из ядра, линейные размеры которого оценивают в 4 тыс. св. лет, с огромными скоростями (до 600 км/с) выбрасываются сгустки вещества, масса которых за год оценивается в массу Солнца. В основном облака концентрируются вблизи галактической плоскости. Туманности скрывают тайны строения нашей Галактики.
Ядро Галактики изучено плохо, поскольку центральная область почти недоступна для наблюдений из-за сильного поглощения в межзвездной среде. Наблюдения в разных областях спектра позволили установить размер ядра примерно в несколько килопарсек. Плотность звезд достигает 107 звезд/пк3, тогда как вблизи Солнца — 0,1 звезд/пк3. В центре Галактики находится источник нетеплового излучения (Стрелец А); вероятно, очень быстрые электроны, которые возникают при вспышках сверхновых звезд или пульсаров, ускоряются в магнитных полях. Мощное излучение от ядра существует в радиодиапазоне и в инфракрасной области. Есть предположения, что это массивное быстро вращающееся плазменное тело — «магнетоид» или черная дыра.
Движения старых и молодых звезд в Галактике имеют различия. У старых — большие эксцентриситеты орбит, а молодые движутся почти по окружностям. Получаются две подсистемы: молодые звезды быстро вращаются внутри почти неподвижной системы более старых звезд. Оказалось, старое население Галактики более или менее равномерно занимает почти сферический объем, концентрируясь ближе к центру, а молодое — концентрируется в диске, толщина которого в десятки раз меньше радиуса. Поэтому на больших расстояниях от центра преобладает излучение звезд диска, а вблизи центра — излучение сферической подсистемы. Возникает некое утолщение диска в его центре. Советский ученый Б. В. Кукаркин выделил в Галактике три подсистемы: плоскую, промежуточную и сферическую, различающиеся по степени сосредоточенности звезд. Он показал, что звезды с одинаковыми физическими характеристиками одинаково распределены в пространстве. Вблизи Солнца пространственные скорости звезд различны по величине и направлению и составляют относительно Солнца 20-30 км/с.
Обнаруживается и вращение вокруг центра Галактики. Участвуя в общем движении Галактики, Солнце вместе со своей системой движется со скоростью 240 км/с и делает полный оборот вокруг центра за 240 млн лет. Этот промежуток времени называют галактическим годом. Направляя радиотелескоп в разные участки Млечного Пути, ученые изучили распределение водорода в пространстве облаков, линия водорода на λ = 21 см оказалась расщепленной на несколько отдельных компонентов. По водородным линиям установлены спиральные рукава, вдоль которых образуются молодые звезды.
Лучевые скорости звезд определяют по доплеровскому смещению спектральных линий. Сравнение фотографий звезд, сделанных через достаточно большие интервалы времени, показывает наличие двух составляющих — лучевой (по направлению к наблюдателю) и тангенциальной. Для представления о пространственной скорости необходимо знать обе составляющие. Если лучевую определяют по эффекту Доплера, то для расчета тангенциальной составляющей нужно знать и расстояние до звезды. Звезды гало и диска Галактики различны и по своим пространственным скоростям: у звезд гало скорости в 4-5 раз больше.
Отличия химического состава (различное содержание тяжелых элементов) звезд гало и диска позволили выстроить последовательность жизни звезд. Предполагается, что Галактика как система звезд образовалась примерно 13 млрд лет назад. На «дозвездной», или «до-галактической», стадии развития вещество Вселенной не содержало никаких элементов, кроме водорода (3/4) и гелия (1/4). Гравитационные силы сжимали облако, и возникли первые неоднородности, среди которых выделились области с большой плотностью и в которых начался процесс звездообразования. Возникли и первые скопления звезд. Появились шаровые и рассеянные скопления, в них сформировалось некоторое количество звезд классов О и В. Они «сгорели» за 1 млрд лет, закончив свою эволюцию вспышкой сверхновой.
Более тяжелыми элементами обогатили межзвездную среду оболочки взрывающихся звезд. Первые поколения звезд содержат элементы более тяжелые, условно их называют металлами.
Появление тяжелых элементов говорит о том, что, прежде чем попасть в эти звезды, первичное вещество подверглось каким-то ядерным превращениям и обогатилось тяжелыми элементами. Большинство звезд имеют малую массу, которой недостаточно для выработки тяжелых металлов путем термоядерных реакций. Такие звезды, как наше Солнце, способны только превращать водород в гелий, поэтому их химический состав не меняется и соответствует тем химическим элементам, из которых они образовывались. Тот факт, что молодые звезды гораздо богаче металлами, чем старые (у Солнца металлы составляют 2-3 % массы), и что межзвездная среда имеет близкий процент содержания металлов, говорит
- 1. Единство естественнонаучного и гуманитарного компонентов культуры личности
- 2. Исходная характеристика научного знания. Обобщенность научного знания.
- 3. Идеальная модель как одна из форм задания объекта в теоретическом естествознании. Развитие модельных представлений об атоме
- 4. Идеализация как одна из форм задания объекта в теоретическом естествознании.
- (Уравнение Ван-дер-Ваальса).
- 5. Проблема обоснования границ научного знания. Сущность и условия применения процедуры обоснования внутри естествознания. Основные вненаучные способы обоснования принимаемых решений.
- 6. Доказанность научного знания
- 7. Методологические регулятивы научного познания
- 8. Понятие метода, методологии и методики
- 9. Наблюдение и специфика его применения в современном естествознании
- 10. Метод эксперимента в современном естествознании
- 11. Гипотеза как форма развития естествознания
- 14. Интеграция фундаментальных и прикладных исследований
- 13. Преемственность в развитии научных теорий
- 12. Математизация естествознания
- 15. Единство эволюционного и революционного путей развития естествознания. Понятие парадигмы. Критический анализ концепции т.Куна
- 19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
- 21. Дальнодействие, близкодейтвие. Концепция силового поля как посредника при передаче взаимодействия. Квантованное поле. Понятие физического вакуума.
- 22. Гравитационное взаимодействие
- 23. Электромагнитное взаимодействие
- (Закон Кулона)
- 24. Сильное взаимодействие
- 25. Слабое взаимодействие
- 26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- 27. Динамические и статистические закономерности в природе. Классическая и квантовая статистика. Лапласовский детерминизм. Фазовые пространства, цель их ввода в физическое познание.
- 28. Понятие состояния в классической и квантовой физике
- 29. Роль законов сохранения в развитии физического знания. Законы сохранения и принципы симметрии. Правила отбора физики элементарных частиц
- 32. Химические системы
- 50. Рациональность. Суть научной рациональности.
- 51. Классический тип научной рациональности
- 45. Антропный принцип
- Оглавление
- Введение
- Становление космологии
- 1.1. Древняя космология
- 1.2. Начало научной космологии. Формирование классической космологической модели.
- 2. Космологические парадоксы
- 2.1. Фотометрический парадокс
- 2.2. Гравитационный парадокс
- 2.3. Термодинамический парадокс
- 2.4. Неевклидовы геометрии
- Особенности современной космологии
- 3.1 Космологические данные
- 3.2 Релятивистская модель Вселенной
- 3.3 Модель расширяющейся Вселенной
- 4 Эволюция Вселенной
- 4.1 Большой взрыв: Инфляционная модель
- 4.2 Ранний этап эволюции Вселенной
- 5 Острова Вселенной
- 5.1 Многообразие форм звёздных систем
- 5.2 Группы и скопления галактик
- 5.3 Эволюция галактик
- 5.4 Радиоизлучение и активность галактик
- 5.5 Галактика Млечный путь
- 5.6 Метагалактика
- 6 Звезды и их эволюция.
- 6.1 Классификация звезд
- 6.2 Эволюция звезд
- 6.3 Солнце - самая дорогая нам звезда
- 7. Солнечная система
- 7.1 Зарождение
- 7.2 Строение Солнечной системы
- 7.3 Кометы
- 7.4 Планета Земля
- 7.5. Геодинамические процессы
- 8. Антропный принцип и эволюция
- Проблема поиска жизни во Вселенной
- Содержание
- Введение
- 1 Учение о составе вещества
- 1.1 Химический элемент
- 2.2 Химическое соединение
- 2.3 Химические связи
- 3 Химические процессы
- 1.Реакция соединения.
- 2.Реакция разложения
- 3.Реакция замещения
- 4. Реакция обмена
- 4 Структурная химия
- 5 Эволюционные проблемы в химии.
- 7 Контрольные вопросы
- 8 Тестовые задания
- 10 Рекомендуемая литература
- 1 Варианты контрольных работ
- 4.2 Какой из ниже приведенных процессов, не относится к однофакторному эксперименту:
- 4.2 К какому взаимодействию относится изотопическая инвариантность?
- 4.3 Основная задача механики состоит в том, чтобы:
- 4.2 Основное (истинное) стационарное состояние атома, это состояние:
- 4.3 Полное описание механического движения в механике Галилея-Ньютона задается:
- 4.2 Идеальная модель атома Бора, постулирует:
- 4.3 Выберите правильное высказывание:
- 2 Распределение вариантов контрольных работ по номерам зачетных книжек и учебным годам
- 3 Контрольные вопросы к зачету и экзамену
- Список использованных источников
- Возникновение живой материи и особенности ее организации
- 1.1 Возникновение живой материи
- Свойства жизни
- 3. Уровни организации жизни
- 3.1 Молекулярно-генетический уровень.
- 3.2 Клеточный уровень
- 3.2.1 Химическая организация клеток
- Линейная днк