logo
Астрофизика

§ 28. Модели газовых шаров.

Математическая формулировка проблемы

Сформулируем уравнения, описывающие внутреннее строение звезд. Уравнение равновесия (2.3):

. (4.13)

где r  расстояние от центра звезды, M (r)  масса внутри шара радиуса r:

.

Или

. (4.14)

Пусть L(r)  мощность энергии, выделяемой внутри сферы радиуса r. Тогда:

.

Это интегральное соотношение можно свести к дифференциальному уравнению:

. (4.15)

В равновесии количество энергии, выделяемой в единицу времени внутри сферы радиуса r, должно равняться количеству анергии, переносимой за то же время через эту сферу. Тогда поток энергии, очевидно, равен . Если этот поток определяется теплопроводностью, то (см. "Молекулярную физику"):

,

где   коэффициент теплопроводности. Как известно

.

В случае теплопроводности, осуществляемой переносом излучения, для фотонного газа , (a - постоянная Стефана-Больцмана, см. Приложение 1). Тогда

(4.16)

К приведенным уравнениям необходимо добавить замыкающие уравнения: уравнение состояния и функциональные зависимости  и  от параметров среды (см. предыдущий параграф), а также граничные условия: в центре звезда при все величины должны быть конечными; на поверхности звезды при ,  полная масса звезды,  светимость звезды.