7.2 Строение Солнечной системы
Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, восемь планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет, бесчисленное множество метеоритных тел, межпланетного газа и пыли.
Восемь классических планет и три новые карликовые планеты: Церера, Харон и 2003UB313.
Планеты Солнечной системы подразделены на две группы:
-планеты земной группы: Меркурий, Венера, Земля, Марс;
-планеты- гиганты: Юпитер, Сатурн, Уран, Нептун.
Основные характеристики планет приведены в таблице 7
Планеты | Среднее расстояние от Солнца | Период обращения | Период вращения на экваторе | Экваториальный диаметр, (км) | Масса в массах Земли | Средняя плотность вещества (Мг/м3)' | Число спут- ников | |
| млн км | а. е. |
|
|
|
|
|
|
Меркурий | 57,9 | 0,39 | 87,97 сут | 58,6 сут | 4878 | 0,055 | 5,5 | - |
Венера | 108,2 | 0,72 | 227,70 сут | 243 сут | 12104 | 0,805 | 5,25 | - |
Земля | 149,6 | 1,00 | 365,26 сут | 23 ч 56 мин | 12756 | 1,00 | 5,25 | 1 |
Марс | 227,9 | 1,52 | 686,98 сут | 24 ч 37 мин | 6974 | 0,106 | 3,94 | 2 |
Юпитер | 778,3 | 5,20 | 11,86 лет | 9 ч 50 мин | 142600 | 314,03 | 1,33 | 16 |
Сатурн | 1427 | 9,54 | 29,46 лет | 10 ч 14 мин | 120200 | 94,01 | 0,70 | 16 |
Уран | 2870 | 19,18 | 84,01 лет | ~20ч* | 53000 | 14,4 | 1,1 | 5 |
Нептун | 4496 | 30,06 | 164,81 лет | ~20ч | 49500 | 17,0 | 1,5 | 2 |
Планета – астрономическое тело, которое имеет достаточную массу, что бы при своем формировании принять круглую форму в гидростатическом равновесии и тело которое вращается вокруг звезды и не является спутником другой планеты. Согласно новому определению планетой считается тело, удовлетворяющее двум условиям: объект должен быть на орбите вокруг звезды (при этом не являться звездой компаньонкой) и должен быть достаточно большой массы, что бы во время формирования принять сферобразную форму.
"Карликовая планета" – небесное тело, которое обращается вокруг Солнца, имеет достаточную массу, для того, чтобы самогравитация превосходила твердотельные силы и тело могло принять гидростатически равновесную (близкую к сферической) форму, ( не очищает окрестности своей орбиты и не является спутником (планеты).
Все остальные объекты, обращающиеся вокруг Солнца, охватываются понятием "Малые тела Солнечной системы.
Различие планет по физическим свойствам обусловлено тем, что земная группа формировалась ближе к Солнцу, а планеты-гиганты на очень холодной периферии Солнечной системы.
Планеты земной группы сравнительно малы и имеют большую плотность. Планеты данной группы имеют твердые оболочки, в которых сосредоточена почти вся их масс. Венера, Земля, Марс обладают атмосферами. Меркурий практически лишен атмосферы.
Планеты земной группы резко отличаются по элементному составу от Солнца и совершенно не ответствуют средней космической распространенности элементов - очень мало водорода, инертных газов, включая гелий.
Планета - гиганты обладают иным химическим составом. Юпитер и Сатурн содержат водород и гелий в той же пропорции, что и Солнце. Вероятно, другие элементы также содержатся в пропорциях соответствующих солнечному составу. В недрах Урана и Нептуна, по-видимому, больше тяжелых элементов.
Недра Юпитера находятся в жидком состоянии, за исключением небольшого ядра, которое представляет собой результат металлизации жидкого водорода. Температура в центре Юпитера около 30000К. Химический и изотопный состав Юпитера отражает, по-видимому, состав межзвездной среды, какой она была 5 млрд. лет назад. Вместе с тем Юпитер никогда не был настолько горяч, чтобы в нем могли протекать термоядерные реакции. Сатурн по внутреннему строению похож на Юпитер. Строение недр Урана и Нептуна иное: доля каменистых материалов в них существенно больше.
Основными источниками энергии в недрах планет являются радиоактивный распад элементов и выделение гравитационной потенциальной энергии при аккреции и дифференциации вещества, его постепенном перераспределении по глубине в соответствии с плотностью – тяжелые фрагменты тонут, легкие всплывают. такие процессы вызывают перемещение отдельных участков земной коры, деформацию, горообразование, тектонические и вулканические процессы.
Причина вулканических процессов в следующем. В верхней мантии существуют небольшие области, где температура достаточна для плавления ее вещества. Расплавленное вещество(магма), выдавливающееся вверх, прорывается через кору, и происходит вулканическое извержение. Судя по характеру поверхности, среди планет земной группы тектонически наиболее активна Земля, за ней следует Венера и Марс. При этом важно, что выделяемая Землей тепловая энергия не приводила ее в полностью расплавленное состояние.
Поверхность планет и их спутников формируют кроме эндогенных (тектонических, вулканических) процессов и экзогенные - падение метеорных тел(кратеры),эрозия под действием ветра, осадков воды, ледников, химическое взаимодействие поверхности с атмосферой и гидросферой и др. Эндогенные и экзогенные процессы определяют рельеф поверхности планет.
Помимо планет к солнечной системе принадлежат также и кометы - небесные тела, периодически появляющиеся вблизи планет солнечной системы. Общее предполагаемое число комет в Солнечной системе - около 2,5 млн., наблюдалось около 600 комет( многократно приближающихся к Солнцу - 325).В течении года можно наблюдать 7-10 комет.
- 1. Единство естественнонаучного и гуманитарного компонентов культуры личности
- 2. Исходная характеристика научного знания. Обобщенность научного знания.
- 3. Идеальная модель как одна из форм задания объекта в теоретическом естествознании. Развитие модельных представлений об атоме
- 4. Идеализация как одна из форм задания объекта в теоретическом естествознании.
- (Уравнение Ван-дер-Ваальса).
- 5. Проблема обоснования границ научного знания. Сущность и условия применения процедуры обоснования внутри естествознания. Основные вненаучные способы обоснования принимаемых решений.
- 6. Доказанность научного знания
- 7. Методологические регулятивы научного познания
- 8. Понятие метода, методологии и методики
- 9. Наблюдение и специфика его применения в современном естествознании
- 10. Метод эксперимента в современном естествознании
- 11. Гипотеза как форма развития естествознания
- 14. Интеграция фундаментальных и прикладных исследований
- 13. Преемственность в развитии научных теорий
- 12. Математизация естествознания
- 15. Единство эволюционного и революционного путей развития естествознания. Понятие парадигмы. Критический анализ концепции т.Куна
- 19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
- 21. Дальнодействие, близкодейтвие. Концепция силового поля как посредника при передаче взаимодействия. Квантованное поле. Понятие физического вакуума.
- 22. Гравитационное взаимодействие
- 23. Электромагнитное взаимодействие
- (Закон Кулона)
- 24. Сильное взаимодействие
- 25. Слабое взаимодействие
- 26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- 27. Динамические и статистические закономерности в природе. Классическая и квантовая статистика. Лапласовский детерминизм. Фазовые пространства, цель их ввода в физическое познание.
- 28. Понятие состояния в классической и квантовой физике
- 29. Роль законов сохранения в развитии физического знания. Законы сохранения и принципы симметрии. Правила отбора физики элементарных частиц
- 32. Химические системы
- 50. Рациональность. Суть научной рациональности.
- 51. Классический тип научной рациональности
- 45. Антропный принцип
- Оглавление
- Введение
- Становление космологии
- 1.1. Древняя космология
- 1.2. Начало научной космологии. Формирование классической космологической модели.
- 2. Космологические парадоксы
- 2.1. Фотометрический парадокс
- 2.2. Гравитационный парадокс
- 2.3. Термодинамический парадокс
- 2.4. Неевклидовы геометрии
- Особенности современной космологии
- 3.1 Космологические данные
- 3.2 Релятивистская модель Вселенной
- 3.3 Модель расширяющейся Вселенной
- 4 Эволюция Вселенной
- 4.1 Большой взрыв: Инфляционная модель
- 4.2 Ранний этап эволюции Вселенной
- 5 Острова Вселенной
- 5.1 Многообразие форм звёздных систем
- 5.2 Группы и скопления галактик
- 5.3 Эволюция галактик
- 5.4 Радиоизлучение и активность галактик
- 5.5 Галактика Млечный путь
- 5.6 Метагалактика
- 6 Звезды и их эволюция.
- 6.1 Классификация звезд
- 6.2 Эволюция звезд
- 6.3 Солнце - самая дорогая нам звезда
- 7. Солнечная система
- 7.1 Зарождение
- 7.2 Строение Солнечной системы
- 7.3 Кометы
- 7.4 Планета Земля
- 7.5. Геодинамические процессы
- 8. Антропный принцип и эволюция
- Проблема поиска жизни во Вселенной
- Содержание
- Введение
- 1 Учение о составе вещества
- 1.1 Химический элемент
- 2.2 Химическое соединение
- 2.3 Химические связи
- 3 Химические процессы
- 1.Реакция соединения.
- 2.Реакция разложения
- 3.Реакция замещения
- 4. Реакция обмена
- 4 Структурная химия
- 5 Эволюционные проблемы в химии.
- 7 Контрольные вопросы
- 8 Тестовые задания
- 10 Рекомендуемая литература
- 1 Варианты контрольных работ
- 4.2 Какой из ниже приведенных процессов, не относится к однофакторному эксперименту:
- 4.2 К какому взаимодействию относится изотопическая инвариантность?
- 4.3 Основная задача механики состоит в том, чтобы:
- 4.2 Основное (истинное) стационарное состояние атома, это состояние:
- 4.3 Полное описание механического движения в механике Галилея-Ньютона задается:
- 4.2 Идеальная модель атома Бора, постулирует:
- 4.3 Выберите правильное высказывание:
- 2 Распределение вариантов контрольных работ по номерам зачетных книжек и учебным годам
- 3 Контрольные вопросы к зачету и экзамену
- Список использованных источников
- Возникновение живой материи и особенности ее организации
- 1.1 Возникновение живой материи
- Свойства жизни
- 3. Уровни организации жизни
- 3.1 Молекулярно-генетический уровень.
- 3.2 Клеточный уровень
- 3.2.1 Химическая организация клеток
- Линейная днк