1.1 Химический элемент
Понятие "химический элемент" является одним из основных понятий химии. Понятие "элемент " в качестве научного термина впервые использовано Р. Бойлем в 1661г. Со времен Бойля элементом считали всякое простое вещество, которое можно получить в результате разложения сложных веществ, но которое не способно к дальнейшему разложению на еще более простые вещества.
Начало XIX в. ознаменовалось открытием новых количественных закономерностей. Разработка атомно-молекулярной теории позволила Дальтону высказать атомную гипотезу и ввести в химию понятие об относительном атомном весе элементов и определить атомные веса некоторых элементов. Таким образом, качественное своеобразие химических элементов начинают связывать с количественными - относительной атомной массой.
Атомистическая гипотеза в том виде, как она была дана Дальтоном, не могла внести ничего нового в первое определение элемента. По Дальтону, элемент можно определить как вид атомов, характеризующихся определенным значением атомного веса. По представлению Дальтона, простые вещества всегда состоят из определенного вида атомов, следовательно, простые вещества суть элементы.
Путаница была устранена позже, когда было установлено, что многие простые вещества образованы из молекул, а не из атомов. Впервые Менделеев в связи с этим указал на необходимость ясно различать два понятия: элемент и простое вещество, или простое тело. «Простое тело - это вещество, металл или металлоид, с рядом физических признаков и химических реакций. Ему свойствен частичный вес, содержащий один (как Hg или Cd, а вероятно, и многие другие простые тела) или несколько (S6, S2, О2, Нг, С12 и т. д.) атомов. Оно способно являться в изомерных и полимерных формах (02 и 03, S2 и S8) и отличается от сложных тел только тем, что в простом теле все атомы однородны. Под именем элементов должно подразумевать те материальные составные части простых и сложных тел, которые придают им известную совокупность физических и химических свойств. Если простому телу соответствует понятие о частице, то элементу отвечает понятие об атоме. Углерод есть элемент, а уголь, графит и алмаз суть тела простые».
Следовательно, по Менделееву, химический элемент есть вид атомов, входящих в состав простых и сложных тел, характеризующийся определенным значением атомной массы.
Наряду с качественными характеристиками свойств были накоплены сведения о свойствах, которые в отличие от первых подлежат точному измерению, и среди них атомная масса элементов и их валентность, т. е. способность образовывать различные формы соединений.
Итак, открытие новых элементов и изучение свойств элементов и их соединений, с одной стороны, позволили накопить большой фактический материал, с другой - выявили необходимость его систематизации. Прежде всего, нужно было решить основной вопрос: являются ли химические элементы разрозненными, независимыми или они закономерно связаны между собой в единую систему.
На языке диалектики естественная систематика должна означать раскрытие взаимосвязи между единичным (элемент) и всеобщим (система) через особенное (группа). Решение этой задачи оказалось под силу только такому гению, каким был Менделеев. Оно состояло в открытии периодического закона и разработке периодической системы элементов.
Периодический закон был открыт при поисках классификации химических элементов. Менделеев избирает за основу систематики элементов двойной критерий: атомная масса и химические свойства. Атомная масса - основной решающий признак элемента, средство систематизации, давшее ему возможность превратить хаос накопленных химией фактов и понятий в стройную систему - фундамент современной химии.
Д. И. Менделеев раскрывает содержание периодического закона следующим образом:
«Элементы, расположенные по величине их атомного веса, представляют явственную периодичность свойств».
«Величина атомного веса определяет характер элемента, как величина частицы определяет свойства сложного тела». «Оттого, например, соединения S и Те, С1 и Вг и т. п. при сходстве представляют и различия весьма ясные».
«Должно ожидать открытия еще многих неизвестных простых тел».
«Величина атомного веса элемента иногда может быть исправлена, зная его аналоги».
«Некоторые аналоги элементов открываются по величине веса их атома».
«Распространенные в природе простые тела имеют малый атомный вес, а все элементы с малым атомным весом характеризуются разностью свойств. Они поэтому суть типические элементы».
Эти шесть пунктов не только характеризуют содержание закона, но раскрывают его методологическое значение как метода познания и предвидения.
Периодический закон и периодическая система получили свое полное подтверждение и дальнейшее развитие при установлении строения атомов элементов.
Мозли в результате исследования рентгеновских спектров элементов показал, что положительный заряд атома элемента численно равен порядковому номеру в периодической системе. Следовательно, химическая природа элемента определяется не массой (атомным весом), а новой величиной - зарядом ядра или порядковым номерам.
Периодически изменяющиеся свойства элементов стали связывать не с величиной атомного веса, а с величиной заряда ядра или порядкового номера.
Периодический закон претерпел некоторую эволюцию. Теперь его формулируют так: свойства элементов являются периодической функцией положительного заряда ядра атомов элементов. В связи с этим претерпели эволюцию и некоторые основные понятия химии, например понятие элемента.
Элемент - это вид атомов с положительным одинаковым зарядом ядра (или занимающих одно и то же место в таблице Менделеева).
К настоящему времени сложилось определенное представление о структуре атома и ядра и о квантовомеханических свойствах составляющих их частиц. Раскрыт физический смысл периодического закона и дано квантовомеханическое объяснение строения атомов химических элементов периодической системы Менделеева.
Все известные химические в периодической системе образуют 8 вертикальных столбцов- групп, которые состоят из двух подгрупп. Горизонтальные ряды называются периодами, внутри каждого периода наблюдается более или менее равномерный переход от активных металлов через менее активные металлы и слабоактивные неметаллы к очень активным неметаллам, и, наконец, инертным. В некоторых периодах имеются ряды переходных элементов-металлов со сходными химическими свойствами. Структура периодической системы элементов отвечает порядку заполнения электронных оболочек и слоев в атомах, свойствах атомов элементов определяются числом электронов во внешней электронной оболочке.
- 1. Единство естественнонаучного и гуманитарного компонентов культуры личности
- 2. Исходная характеристика научного знания. Обобщенность научного знания.
- 3. Идеальная модель как одна из форм задания объекта в теоретическом естествознании. Развитие модельных представлений об атоме
- 4. Идеализация как одна из форм задания объекта в теоретическом естествознании.
- (Уравнение Ван-дер-Ваальса).
- 5. Проблема обоснования границ научного знания. Сущность и условия применения процедуры обоснования внутри естествознания. Основные вненаучные способы обоснования принимаемых решений.
- 6. Доказанность научного знания
- 7. Методологические регулятивы научного познания
- 8. Понятие метода, методологии и методики
- 9. Наблюдение и специфика его применения в современном естествознании
- 10. Метод эксперимента в современном естествознании
- 11. Гипотеза как форма развития естествознания
- 14. Интеграция фундаментальных и прикладных исследований
- 13. Преемственность в развитии научных теорий
- 12. Математизация естествознания
- 15. Единство эволюционного и революционного путей развития естествознания. Понятие парадигмы. Критический анализ концепции т.Куна
- 19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
- 21. Дальнодействие, близкодейтвие. Концепция силового поля как посредника при передаче взаимодействия. Квантованное поле. Понятие физического вакуума.
- 22. Гравитационное взаимодействие
- 23. Электромагнитное взаимодействие
- (Закон Кулона)
- 24. Сильное взаимодействие
- 25. Слабое взаимодействие
- 26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- 27. Динамические и статистические закономерности в природе. Классическая и квантовая статистика. Лапласовский детерминизм. Фазовые пространства, цель их ввода в физическое познание.
- 28. Понятие состояния в классической и квантовой физике
- 29. Роль законов сохранения в развитии физического знания. Законы сохранения и принципы симметрии. Правила отбора физики элементарных частиц
- 32. Химические системы
- 50. Рациональность. Суть научной рациональности.
- 51. Классический тип научной рациональности
- 45. Антропный принцип
- Оглавление
- Введение
- Становление космологии
- 1.1. Древняя космология
- 1.2. Начало научной космологии. Формирование классической космологической модели.
- 2. Космологические парадоксы
- 2.1. Фотометрический парадокс
- 2.2. Гравитационный парадокс
- 2.3. Термодинамический парадокс
- 2.4. Неевклидовы геометрии
- Особенности современной космологии
- 3.1 Космологические данные
- 3.2 Релятивистская модель Вселенной
- 3.3 Модель расширяющейся Вселенной
- 4 Эволюция Вселенной
- 4.1 Большой взрыв: Инфляционная модель
- 4.2 Ранний этап эволюции Вселенной
- 5 Острова Вселенной
- 5.1 Многообразие форм звёздных систем
- 5.2 Группы и скопления галактик
- 5.3 Эволюция галактик
- 5.4 Радиоизлучение и активность галактик
- 5.5 Галактика Млечный путь
- 5.6 Метагалактика
- 6 Звезды и их эволюция.
- 6.1 Классификация звезд
- 6.2 Эволюция звезд
- 6.3 Солнце - самая дорогая нам звезда
- 7. Солнечная система
- 7.1 Зарождение
- 7.2 Строение Солнечной системы
- 7.3 Кометы
- 7.4 Планета Земля
- 7.5. Геодинамические процессы
- 8. Антропный принцип и эволюция
- Проблема поиска жизни во Вселенной
- Содержание
- Введение
- 1 Учение о составе вещества
- 1.1 Химический элемент
- 2.2 Химическое соединение
- 2.3 Химические связи
- 3 Химические процессы
- 1.Реакция соединения.
- 2.Реакция разложения
- 3.Реакция замещения
- 4. Реакция обмена
- 4 Структурная химия
- 5 Эволюционные проблемы в химии.
- 7 Контрольные вопросы
- 8 Тестовые задания
- 10 Рекомендуемая литература
- 1 Варианты контрольных работ
- 4.2 Какой из ниже приведенных процессов, не относится к однофакторному эксперименту:
- 4.2 К какому взаимодействию относится изотопическая инвариантность?
- 4.3 Основная задача механики состоит в том, чтобы:
- 4.2 Основное (истинное) стационарное состояние атома, это состояние:
- 4.3 Полное описание механического движения в механике Галилея-Ньютона задается:
- 4.2 Идеальная модель атома Бора, постулирует:
- 4.3 Выберите правильное высказывание:
- 2 Распределение вариантов контрольных работ по номерам зачетных книжек и учебным годам
- 3 Контрольные вопросы к зачету и экзамену
- Список использованных источников
- Возникновение живой материи и особенности ее организации
- 1.1 Возникновение живой материи
- Свойства жизни
- 3. Уровни организации жизни
- 3.1 Молекулярно-генетический уровень.
- 3.2 Клеточный уровень
- 3.2.1 Химическая организация клеток
- Линейная днк