19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
Развитие механики привело к изменению представлений о физических свойствах объектов.
Классическая физика считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Напомним, что физические свойства объекта характеризуются качественно и количественно. Качественная характеристика свойства - это его сущность (например, скорость, масса, энергия и т.д.). Классическая физика исходила из того, что средства познания на изучаемые объекты не влияют. Для различных типов механических задач средством познания является система отсчета. Без ее введения нельзя корректно ни сформулировать, ни решить механическую задачу. Если свойства объекта ни по качественной, ни по количественной характеристике не зависят от системы отсчета, то они называются абсолютными. Так, какую бы систему отсчета для решения конкретной механической задачи мы не взяли, в каждой из них будут проявляться качественно и количественно масса объекта, сила, действующая на объект, ускорение, скорость.
Если же свойства объекта зависят от системы отсчета, то их принято считать относительными. Классическая физика знала лишь одну такую величину - скорость объекта по количественной характеристике. Это означало, что бессмысленно говорить, что объект движется с такой-то скоростью, не указывая систему отсчета: в разных системах отсчета количественное значение механической скорости объекта будет различно. Все же остальные свойства объекта были абсолютными и по качественной, и по количественной характеристикам.
Уже теория относительности вскрыла количественную относительность таких свойств, как длина, время жизни, масса. Количественная величина этих свойств зависит не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количественная определенность свойств объекта должна быть отнесена не к самому объекту, а к системе: объект + система отсчета. Но носителем качественной определенности свойств по-прежнему оставался сам объект.
Квантовая теория пошла дальше в этом направлении. Она выдвинула идею дополнительности. Принцип дополнительности сформулировал Н. Бор. Его суть: получение экспериментальной информации об одних физических величинах, описывающих микрообъекты, неизбежно связано с потерей информации о некоторых других величинах. Такими взаимно дополнительными величинами являются, например, координата частицы и ее скорость (импульс).
С физической точки зрения принцип дополнительности объясняют влиянием измерительного прибора, который всегда являлся макроскопическим объектом, на состояние микрообъекта. При точном измерении одной из дополнительных величин, например, координаты частицы, с помощью соответствующего прибора другая величина - импульс в результате взаимодействия частицы с прибором претерпевает такое изменение, что ее последующее измерение вообще теряет смысл.
Фактически принцип дополнительности отражает невозможность точно описать объекты микромира с помощью понятий классической физики.
В классической механике описывать состояние частицы с помощью координаты и импульса можно потому, что в макромире положение и скорость движущейся частицы действительно имеют в каждый момент времени определенные значения, которые могут быть измерены на опыте. В микромире это оказывается невозможным из-за двойственной, корпускулярно-волновой природы микрообъектов. Рассмотрим пример, поясняющий принцип дополнительности.
При рассеянии микрочастиц на кристалле наблюдается дифракционная картина. Она обусловлена волновыми свойствами частиц. По этой дифракционной картине можно рассчитать длину волны микрочастицы, а значит, и ее скорость. Однако при этом положение отдельной частицы будет неопределенным. Если же попытаться каким-либо способом уточнить, на какое место фотопластинки попала определенная частица, то дифракционная картина пропадает. Это означает, что о ее скорости уже ничего сказать нельзя.
Таким образом, существуют две взаимно дополнительные картины при описании объекта - пространственно-временная и импульсно-энергетическая.
Принцип дополнительности приводит к неизбежному выводу, что свойства объекта необходимо рассматривать как характеристику потенциальных возможностей объекта, которые реализуются только при наличии строго определенного второго объекта (в процессе измерения - прибора), взаимодействующего с первым.
- 1. Единство естественнонаучного и гуманитарного компонентов культуры личности
- 2. Исходная характеристика научного знания. Обобщенность научного знания.
- 3. Идеальная модель как одна из форм задания объекта в теоретическом естествознании. Развитие модельных представлений об атоме
- 4. Идеализация как одна из форм задания объекта в теоретическом естествознании.
- (Уравнение Ван-дер-Ваальса).
- 5. Проблема обоснования границ научного знания. Сущность и условия применения процедуры обоснования внутри естествознания. Основные вненаучные способы обоснования принимаемых решений.
- 6. Доказанность научного знания
- 7. Методологические регулятивы научного познания
- 8. Понятие метода, методологии и методики
- 9. Наблюдение и специфика его применения в современном естествознании
- 10. Метод эксперимента в современном естествознании
- 11. Гипотеза как форма развития естествознания
- 14. Интеграция фундаментальных и прикладных исследований
- 13. Преемственность в развитии научных теорий
- 12. Математизация естествознания
- 15. Единство эволюционного и революционного путей развития естествознания. Понятие парадигмы. Критический анализ концепции т.Куна
- 19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
- 21. Дальнодействие, близкодейтвие. Концепция силового поля как посредника при передаче взаимодействия. Квантованное поле. Понятие физического вакуума.
- 22. Гравитационное взаимодействие
- 23. Электромагнитное взаимодействие
- (Закон Кулона)
- 24. Сильное взаимодействие
- 25. Слабое взаимодействие
- 26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- 27. Динамические и статистические закономерности в природе. Классическая и квантовая статистика. Лапласовский детерминизм. Фазовые пространства, цель их ввода в физическое познание.
- 28. Понятие состояния в классической и квантовой физике
- 29. Роль законов сохранения в развитии физического знания. Законы сохранения и принципы симметрии. Правила отбора физики элементарных частиц
- 32. Химические системы
- 50. Рациональность. Суть научной рациональности.
- 51. Классический тип научной рациональности
- 45. Антропный принцип
- Оглавление
- Введение
- Становление космологии
- 1.1. Древняя космология
- 1.2. Начало научной космологии. Формирование классической космологической модели.
- 2. Космологические парадоксы
- 2.1. Фотометрический парадокс
- 2.2. Гравитационный парадокс
- 2.3. Термодинамический парадокс
- 2.4. Неевклидовы геометрии
- Особенности современной космологии
- 3.1 Космологические данные
- 3.2 Релятивистская модель Вселенной
- 3.3 Модель расширяющейся Вселенной
- 4 Эволюция Вселенной
- 4.1 Большой взрыв: Инфляционная модель
- 4.2 Ранний этап эволюции Вселенной
- 5 Острова Вселенной
- 5.1 Многообразие форм звёздных систем
- 5.2 Группы и скопления галактик
- 5.3 Эволюция галактик
- 5.4 Радиоизлучение и активность галактик
- 5.5 Галактика Млечный путь
- 5.6 Метагалактика
- 6 Звезды и их эволюция.
- 6.1 Классификация звезд
- 6.2 Эволюция звезд
- 6.3 Солнце - самая дорогая нам звезда
- 7. Солнечная система
- 7.1 Зарождение
- 7.2 Строение Солнечной системы
- 7.3 Кометы
- 7.4 Планета Земля
- 7.5. Геодинамические процессы
- 8. Антропный принцип и эволюция
- Проблема поиска жизни во Вселенной
- Содержание
- Введение
- 1 Учение о составе вещества
- 1.1 Химический элемент
- 2.2 Химическое соединение
- 2.3 Химические связи
- 3 Химические процессы
- 1.Реакция соединения.
- 2.Реакция разложения
- 3.Реакция замещения
- 4. Реакция обмена
- 4 Структурная химия
- 5 Эволюционные проблемы в химии.
- 7 Контрольные вопросы
- 8 Тестовые задания
- 10 Рекомендуемая литература
- 1 Варианты контрольных работ
- 4.2 Какой из ниже приведенных процессов, не относится к однофакторному эксперименту:
- 4.2 К какому взаимодействию относится изотопическая инвариантность?
- 4.3 Основная задача механики состоит в том, чтобы:
- 4.2 Основное (истинное) стационарное состояние атома, это состояние:
- 4.3 Полное описание механического движения в механике Галилея-Ньютона задается:
- 4.2 Идеальная модель атома Бора, постулирует:
- 4.3 Выберите правильное высказывание:
- 2 Распределение вариантов контрольных работ по номерам зачетных книжек и учебным годам
- 3 Контрольные вопросы к зачету и экзамену
- Список использованных источников
- Возникновение живой материи и особенности ее организации
- 1.1 Возникновение живой материи
- Свойства жизни
- 3. Уровни организации жизни
- 3.1 Молекулярно-генетический уровень.
- 3.2 Клеточный уровень
- 3.2.1 Химическая организация клеток
- Линейная днк