§13.4. Теорема ог
Если − напряжённость поля точечного зарядаQ, то в точке пространства, отстоящей от источника на вектор ,
,
где . Тогда элементарный поток через поверхность, находящуюся в этой точке и направленнуюот заряда, имеет вид:
.
Понятно, что d − телесный угол, под которым видна поверхность из точки расположения источника. Отметим, что выражение потока напряжённости через телесный угол оказалось возможнымисключительно благодаря обратной квадратичной зависимости напряжённости поля точечного источника от расстояния.
Подсчёт потока напряжённости поля точечного заряда через замкнутую поверхность S рассмотрим в двух случаях.
а) Заряд находится внутри поверхности S
Рис.13.6
Из рисунка 13.6 видно, что интегрирование в этом случае производится по полному телесному углу.
б) Заряд находится вне поверхности S
Рис.13.7
Под телесным углом (рис.13.7) из точки Q видны две поверхности, образующие замкнутую поверхность S: S1, нормали которой обращены к заряду, и S2, нормали которой обращены от него.
.
Теперь в первом интеграле интегрирование производится по поверхности, нормали которой тоже обращены от источника, следовательно, теперь оба слагаемых могут быть выражены через телесный угол :
;
Тогда понятно, что полный поток через поверхность S равен 0.
Если имеется совокупность точечных зарядов, то в соответствии с принципом суперпозиции полей
,
где N − количество точечных источников. Следовательно, поток напряжённости их общего поля через произвольную замкнутую поверхность S:
,
где i=1, если Qi находится внутри замкнутой поверхности и i=0, если Qi находится за пределами замкнутой поверхности, следовательно, − заряд, охваченный замкнутой поверхностью. Тогда окончательно:
Поток напряжённости электрического поля через произвольную замкнутую поверхность в вакууме равен заряду, охватываемому этой поверхностью, делённому на электрическую постоянную вакуума.
- Глава 12. Электростатика. Электрический заряд и электростатическое поле
- §12.1. Электрический заряд как источник электрического поля
- §12.2. Понятие электростатического поля
- §12.3. Принцип суперпозиции полей и поле точечного заряда
- §12.4. Поле диполя
- Глава 13. Электростатика. Теорема остроградского-гаусса для напряжённости электростатического поля в вакууме
- §13.1. Вектор площади
- §13.2. Телесный угол
- §13.3. Поток вектора через поверхность
- §13.4. Теорема ог
- §13.5. Применение теоремы ог
- Глава 14. Электростатика. Потенциал
- §14.1. Потенциальность электростатического поля
- §14.2. Понятие потенциала
- §14.3. Связь между векторным полем напряжённости и скалярным полем потенциала
- §14.4. Принцип суперпозиции полей в применении к потенциалу
- §14.5. Примеры расчёта потенциалов полей разных конфигураций
- §14.6. Энергия системы точечных зарядов
- Глава 15. Электростатика.
- §15.1. Диэлектрическая среда
- §15.2. Неполярные диэлектрики
- §15.3. Полярные диэлектрики
- §15.4. Поляризация изотропного диэлектрика
- §15.5. Теорема Остроградского-Гаусса для электростатического поля в диэлектрической среде
- §15.6. Условия на границе раздела двух изотропных диэлектрических сред
- §15.7. Заключение
- Глава 16. Электростатика. Проводники в электростатическом поле
- §16.1. Введение
- §16.2. Распределение нескомпенсированного несвязанного заряда по электростатическому проводнику
- §16.3. Пондеромоторные силы
- §16.4. Электрическая ёмкость уединённого проводника
- §16.5. Неуединённый проводник
- §16.6. Конденсаторы
- §16.7. Батареи конденсаторов
- §16.8. Энергия электростатического поля
- §16.9. Энергия поляризованного диэлектрика
- Глава 17. Постоянный электрический ток. Законы постоянного тока
- §17.1. Основные понятия
- §17.2. Закон Ома в дифференциальной форме
- §17.3. Закон Ома в интегральной форме для элементарного участка
- §17.4. Закон Ома для неоднородного участка цепи (II-я форма интегрального закона Ома)
- §17.5. Закон Ома для однородного участка цепи (I-я форма интегрального закона Ома)
- §17.6. Закон Ома для простого контура (III-я форма интегрального закона Ома)
- §17.7. Законы Кирхгофа
- §17.8. Общий взгляд на интегральный закон Ома.
- §17.9. Закон Джоуля-Ленца в интегральной форме
- §17.10. Закон Джоуля-Ленца в дифференциальной форме
- Глава 18 .Постоянный электрический ток. Классическая теория электропроводности металлов
- §18.1. Экспериментальные доказательства электронной проводимости в металлах
- §18.2. Классическая теория электропроводности металлов (теория Друде-Лоренца)
- §18.3. Закон Видемана-Франца
- §18.4. Трудности классической теории электропроводности
- Глава 19. Магнетизм. Магнитное поле и его источники
- §19.1. Магнитное поле и его воздействие на движущиеся заряды
- §19.2. Релятивистская природа магнитного воздействия
- §19.3. Сила Ампера
- §19.4. Магнитный момент и воздействие на него магнитного поля
- §19.5. Магнитное поле движущегося заряда
- §19.6. Магнитное взаимодействие зарядов
- §19.7. Закон Био-Савара-Лапласа
- §19.8. Простейшие примеры применения закона Био-Савара-Лапласа
- Глава 20. Магнетизм. Интегральные уравнения
- §20.1. Теорема Остроградского-Гаусса для магнитного поля
- §20.2. Работа силы Ампера на перемещении проводника с током в постоянном магнитном поле
- §20.3. Закон полного тока (теорема Стокса) в вакууме
- §20.4. Поле тороида
- Глава 21. Магнетизм. Магнитное поле в веществе
- §21.1. Орбитальные моменты
- §21.2. Классический атом в магнитном поле
- §21.3. Классификация веществ по их магнитным свойствам
- §21.4. Диамагнетики
- §21.5. Парамагнетики
- §21.6. Магнитная восприимчивость
- §21.7. Закон полного тока в магнетике
- §21.8. Ферромагнетики
- §21.9. Особенности намагничивания ферромагнетиков
- §21.9. Магнитная восприимчивость и магнитная проницаемость ферромагнетика
- Для того, чтобы размагнитить ферромагнетик…
- Глава 22. Электродинамика. Электромагнитная индукция
- §22.1. Закон Фарадея и правило Ленца
- §22.2. Самоиндукция
- §22.3. Замыкание и размыкание электрической цепи
- §22.4. Энергия магнитного поля в неферромагнитной изотропной среде
- Глава 23. Электродинамика. Основы теории максвелла
- §23.1. Введение
- §23.2. Сведения из математической теории поля
- Ротор потенциального поля равен 0.
- Дивергенция вихревого поля равна 0.
- §23.3. Система уравнений Максвелла
- §23.4. Четвертое уравнение Максвелла
- §23.5. Второе уравнение Максвелла
- §23.6. Первое уравнение Максвелла
- §23.7. Третье уравнение Максвелла
- §23.8. Заключение