logo search
Электромагнетизм

§17.7. Законы Кирхгофа

Законы Кирхгофа позволяют рассчитать силы токов, текущих в сложных контурах. Разветвлённым или сложным контуром называется цепь постоянного тока, состоящая из нескольких смежных простых контуров.

Рис.17.10

На рисунке 17.10 изображён сложный контур, состоящий из двух смежных контуров. Необходимым элементом схем сложных контуров являются узлы: точки, в которые втекают и вытекают более двух токов (на рисунке отмечены кружками). Для узлов справедлив I-й закон Кирхгофа:

алгебраическая сумма токов одного узла равна 0:

.

В этой алгебраической сумме токи, втекающие в данный узел, и токи, вытекающие из данного узла, должны иметь разные знаки. Суммирование ведётся по всем токам, связанным с данным узлом. Очевидно, что I-й закон Кирхгофа является следствием уравнения неразрывности для постоянного тока.

При использовании I-го закона Кирхгофа необходимо следить за тем, чтобы обозначения токов разных узлов было единым для всей схемы, так чтобы выполнялось правило: на участке между двумя соседними узлами ток не меняет ни силы, ни направления.

Если проинтегрировать по одному простому контуру закон Ома для элементарного участка:

,

то получим II-й закон Кирхгофа, справедливый для каждого простого контура:

алгебраическая сумма падений напряжения контура равна алгебраической сумме его ЭДС:

.

Знаки падений напряжения и ЭДС определяются по отношению к направлению обхода контура (по часовой или против часовой стрелки), которое для данного контура выбирается произвольно и независимо от выбора, сделанного для других простых контуров. Если ток течёт против направления обхода, он считается отрицательным. Если ЭДС включена против направления обхода, она считается отрицательной.

Уравнения I-го и II-го законов Кирхгофа для всего сложного контура должны составить замкнутую систему линейных уравнений, которая позволяет однозначно определить силы тока контура по ЭДС и сопротивлениям, включённым в контур. Запишем уравнения I-го и II-го законов Кирхгофа для рассматриваемого контура:

Видно, что уравнения (1) и (1’) не являются линейно независимыми: (1’) получается из (1) почленным умножением на -1. Поэтому мы имеем три линейно независимых уравнения:

относительно трёх неизвестных: