38.Виды моделей, используемых для принятия решений.
Прогнозирование и принятие решений. Основной целью моделирования является прогнозирование в широком смысле этого слова. Моделирование позволяет сделать вывод о принципиальной работоспособности объекта (системы S), оценить его потенциально возможные характеристики, установить зависимость характеристик от различных параметров и переменных, определить оптимальные значения параметров и т. п. Машинные модели Мм, используемые в качестве имитаторов и тренажеров, дают возможность предсказать поведение системы S в условиях взаимодействия с внешней средой Е.
Использование метода моделирования для получения прогноза при принятии решений в системе управления в реальном масштабе времени выдвигает на первое место задачу выполнения ограничения на ресурс времени моделирования процесса функционирования системы S. Поэтому рассмотрим более подробно особенности прогнозирования на основе машинной модели Мм в реальном масштабе времени.
Для управления объектом может использоваться в системе либо информация о состояниях (ситуациях) системы S и внешней среды Е, либо информация о выходных характеристиках (поведении) системы S во взаимодействии с внешней средой Е. Это обстоятельство определяет, и цели моделирования В одном случае требуется
оценить изменения состояний zkeZ, k= 1, nz, за время прогнозирования τП (назовем такое моделирование ситуационным). В другом случае требуется оценить выходные характеристики yjeY,j=l,nY, на интервале времени (О, Т) (назовем такое моделирование бихеви-оральным).
Таким образом, цель ситуационного моделирования — получение прогноза вектора состояний z (t) (см. 2.3)), а цель бихевиорального моделирования — оценка вектора выходных характеристик у (t) [см. (2.2) и (2.5)]. Например, если в качестве концептуальной модели Мх процесса функционирования системы S используется Q-схема, то при ситуационном моделировании требуется прогнозировать такие состояния, как число заявок в накопителях, количество занятых каналов и т. д., а при бихевиоральном моделировании в этом случае необходимо оценивать такие характеристики, как вероятность потери заявки, среднее время задержки заявки в системе и т. д. Соответственно целям ситуационного и бихевиорального моделирования должен отличаться и подход к разработке и реализации моделирующих алгоритмов, хотя принципы их построения («принцип Δt» и «принцип δz») сохраняются.
Другой особенностью моделирования для принятия решений по управлению объектом в реальном масштабе времени является существенная ограниченность вычислительных ресурсов, так как такие системы управления, а следовательно, и машинные модели Мм, реализуются, как правило, на базе мини и микро ЭВМ или специализированных микропроцессорных наборов, когда имеется ограничение по быстродействию и объему памяти. Это требует тщательного подхода к минимизации затрат ресурсов по моделированию в реальном масштабе времени [12, 29, 52].
Кроме того, следует учитывать, что достоверность и точность решения задачи моделирования (прогнозирования ситуаций или поведения) системы существенно зависят от количества реализаций N, которые затрачены на получение статистического прогноза (см. гл. 7). Таким образом, возникает проблема поиска компромисса между необходимостью увеличения затрат времени на моделирование, т. е. числа реализаций N [на интервале (О, Т)] для повышения точности и достоверности результатов моделирования (прогнозирования), и необходимостью уменьшения затрат машинного времени из условий управления в реальном масштабе времени.
При использовании машинной модели Мм в контуре управления системой S в реальном масштабе времени возникает также проблема оперативного обновления информации как в базе данных об объекте, так и в базе данных об эксперименте, т. е. в данном случае о конкретном прогнозе.
Рассмотрим более подробно возможности построения моделирующих алгоритмов для ситуационных и бихевиоральных моделей. При ситуационном моделировании важно не потерять информацию о смене состояний системы S, так как от этого зависит эффективность управления. Поэтому построение детерминированных моделирующих алгоритмов, когда используется «принцип Δt», приводит либо к увеличению времени моделирования при уменьшении Δt, либо к снижению достоверности прогноза состояний при увеличении Δt. Это говорит в пользу использования стохастических алгоритмов, а именно тех вариантов, которые наиболее просто реализуются, т. е. асинхронных спорадических алгоритмов.
При бихевиоральном моделировании важно получить усредненную статистическую оценку характеристик системы S на интервале (О, Т). Поэтому при построении моделирующих алгоритмов важно при заданной точности и достоверности результатов моделирования выбрать наиболее просто реализуемый алгоритм, требующий минимальных затрат времени и оперативной памяти на его прогон. В этом случае эффективными могут оказаться как стохастические, так и детерминированные моделирующие алгоритмы. Выбор принципа построения моделирующего алгоритма для принятия решений в системе управления может быть проведен только с учетом особенностей конкретной S.
С точки зрения программирования моделей Мм при моделировании в реальном масштабе времени также имеется ряд особенностей. Это в первую очередь связано с отсутствием или невозможностью использования ЯОН и ЯИМ для программной реализации моделей исходя из возможностей программного обеспечения мини- и микро-ЭВМ и жестких ограничений на время счета по моделирующему алгоритму. В этом случае основное применение находят языки низкого уровня, что усложняет процесс разработки программного обеспечения моделирования в реальном масштабе времени, но
обычно позволяет получить достаточно эффективные рабочие программы моделирования. Для ускорения процесса разработки программного обеспечения моделирования в реальном масштабе времени и повышения его качества рационально разрабатывать соответствующие пакеты прикладных программ, которые с использованием ресурсов высокопроизводительных ЭВМ генерируют рабочие программы моделирования.
Таким образом, моделирование процесса функционирования систем для целей управления в реальном масштабе времени имеет ряд специфических особенностей, но методика моделирования и принципы реализации моделирующих алгоритмов сохраняются.
- Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- Понятие модели системы.
- Определение понятия «моделирование».
- Использование гипотез и аналогий в исследовании систем.
- Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- Сущность системного подхода к моделированию систем.
- 2 Вариант
- Процесс функционирования системы.
- Классификационные признаки видов моделирования систем.
- Математическое моделирование систем.
- 9. Особенности имитационного моделирования систем.
- Метод статистического моделирования.
- 11.Критерии эффективности моделирования систем на эвм.
- Определение математической схемы.
- 13. Экзогенные и эндогенные переменные в модели объекта.
- 14. Закон функционирования системы.
- 15. Понятие алгоритма функционирования.
- 16. Определение статической и динамической моделей объекта.
- Типовые схемы, используемые при моделировании сложных систем и их элементов.
- Условия и особенности использования при разработке моделей систем различных типовых схем.
- Концептуальная модель системы.
- Группы блоков выделяемые при построении блочной конструкции модели системы.
- Сущность статистического моделирования систем.
- Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- Существующие методы проверки качества генераторов случайных чисел.
- Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- Виды факторов в имитационном эксперименте с моделями систем.
- Цель стратегического планирования машинных экспериментов.
- Цель тактического планирования машинных экспериментов.
- Точность и достоверность результатов моделирования систем.
- Сущность фиксации и обработки результатов при статистическом моделировании систем.
- Место имитационных моделей при машинном синтезе систем.
- Способы построения моделирующих алгоритмов q –схем.
- Синхронный и асинхронный моделирующие алгоритмы q –схем.
- Суть структурного подхода при моделировании систем на базе n –схем.
- 34. Особенности формализации процессов функционирования систем на базе а – схем.
- Информационная модель системы.
- Характерные черты эволюционных моделей систем.
- 37.Роль эталонной модели в контуре управления.
- 38.Виды моделей, используемых для принятия решений.
- 39.Суть адаптации применительно к системам управления различными объектами.
- 40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- 41.Какой процесс, протекающий в системе, называется Марковским?
- 42.Какой процесс называется процессом с дискретным состоянием?
- 43.Какой процесс называется процессом с непрерывным временем?
- 44. Что такое поток событий?
- 45. Что такое интенсивность потока событий?
- Какой поток событий называется стационарным?
- 47. Какой поток событий называется ординарным?
- 48.Какой поток событий называется простейшим?
- 49.Как ведут себя смо с ограниченной очередью?
- 50.Чем отличаются динамические системы от статических?
- 51.Как выбирается частота дискретизации (теорема Котельникова)?
- Вопрос 52. Что представляет собой динамический ряд?
- Типы динамических рядов
- Вопрос 53. Чем характеризуется динамическая система?
- Вопрос 54. Что такое порядок динамической системы?
- Вопрос 55. Что характеризуют параметры динамической системы k и t?
- 56.Передаточная функция звена первого порядка.
- 57.Передаточная функция звена второго порядка.
- 58.Переходная функцией (или переходная характеристикой) динамической системы ?
- 59.Функция Хэвисайда от времени 1[t].
- 60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- 61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- Определение коэффициентов по методу Эйлера-Фурье.
- 62.Ряд Фурье для нечетной функции.
- 63.Ряда Фурье для четной функции.
- 64.Как вычисляется составляющие ачх (Si)?
- 65.Как вычисляется составляющие фчх (ϕi)?
- 66.Обратное преобразование Фурье для Si, ϕi.
- 67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- 68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- 69.Основное уравнение динамики.
- 70.Формулой Эйлера.
- 71.Формулой Эйлера при Δt≠0.
- 72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- 73.Как обозначают порядок зависимости точности от величины шага?
- 74.Каков и по какой причине порядок точности у метода Эйлера?
- 75.В каких случаях численный метод обладает сходимостью?
- Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- В общем случае это неравенство можно представить в виде:
- 76.Какая характеристика сходимости интересует исследователей?
- 77.Что понимается под неустойчивостью метода?
- 78.Что обеспечивает устойчивость метода?
- 79.Что обеспечивает сходимость метода?
- 80. Идея уточненного метода Эйлера.
- Сущность другого варианта модифицированного метода Эйлера
- Какова точность метода Рунге-Кутта?
- Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- 94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- 95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- 96.Что представляет собой критерий согласия Стьюдента и как он используется?
- 97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- 98.Каким образом следует вбирать число реализаций опыта?
- 99.Объясните смысл понятия «мощность критерия».
- 100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?