Условия и особенности использования при разработке моделей систем различных типовых схем.
D-схемы (непрерывно-детерминированные)
особенностью непрерывно-детерминированного подхода является применение в качестве математических моделей дифференциальные уравнений. Дифференциальными уравнениями называются такие уравнения, в которых неизвестными являются функции одной или нескольких переменных, причем в уравнение входят не только функции, но и их производные различных порядков. Если неизвестные — функции многих переменных, то уравнения называются уравнениями в частных производных, в противном случае при рассмотрении функции только одной независимой переменной уравнения называются обыкновенными дифференциальными уравнениями.
Использование D-схем позволяет формализовать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя аналитический или имитационный подход, реализованный в виде соответствующего языка для моделирования непрерывных систем или использующий аналоговые и гибридные средства вычислительной техники.
Наиболее важно для системотехники приложение D-схем в качестве математического аппарата в теории автоматического управления.
F-схемы (дискретно-детерминированные т.е. конечные автоматы)
дискретно-детерминированный подход характерен тем, что в качестве математического аппарата на этапе формализации процесса функционирования систем используется математического аппарата математический аппарат теории автоматов. Теория автоматов — это раздел теоретической кибернетики, в котором изучаются математические модели — автоматы. На основе этой теории система представляется в виде автомата, перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени. Понятие F-автомата в дискретно-детерминированном подходе к исследованию на моделях свойств объектов является математической абстракцией, удобной для описания широкого класса процессов функционирования реальных объектов в автоматизированных системах обработки информации и управления. В качестве таких объектов в первую очередь следует назвать элементы и узлы ЭВМ, устройства контроля, регулирования и управления, системы временной и пространственной коммутации в технике обмена информацией и т. д. Для всех перечисленных объектов характерно наличие дискретных состояний и дискретный характер работы во времени, т. е. их описание с помощью F-схем является эффективным.
P-схемы(дискретно-стохастические т.е. вероятностные автоматы)
Применение схем вероятностных автоматов (Р - схем) имеет важное значение для разработки методов проектирования дискретных систем, проявляющих статистически закономерное случайное поведение, для выяснения алгоритмических возможностей таких систем и обоснования границ целесообразности их использования, а также для решения задач синтеза по выбранному критерию дискретных стохастических систем, удовлетворяющих заданным ограничениям.
Р-автоматы могут использоваться как генераторы марковских последовательностей, которые необходимы при построении и реализации процессов функционирования систем S или воздействий внешней среды Е.
Для оценки различных характеристик исследуемых систем, представляемых в виде Р-схем, кроме случая аналитических моделей можно применять и имитационные модели, реализуемые, например, методом статистического моделирования.
Q-схемы (Непрерывно-стохастические модели)
При непрерывно-стохастическом подходе в качестве типовых математических схем применяется система массового обслуживания (англ. queueing system), которые будем называть Q-схемами. Системы массового обслуживания представляют собой класс математических схем, разработанных в теории массового обслуживания и различных приложениях для формализации процессов функционирования систем, которые по своей сути являются процессами обслуживания.
В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических, производственных, технических и других систем, например потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов и т. д.
При этом характерным для работы таких объектов является случайное появление заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени, т. е. стохастический характер процесса их функционирования.
Математическое обеспечение и ресурсные возможности современных ЭВМ позволяют достаточно эффективно провести моделирование различных систем, формализуемых в виде Q-схем, используя либо пакеты прикладных программ, созданные на базе алгоритмических языков общего назначения, либо специализированные языки имитационного моделирования
N-схемы (Сетевые модели)
В практике моделирования объектов часто приходится решать задачи, связанные с формализованным описанием и анализом причинно-следственных связей в сложных системах, где одновременно параллельно протекает несколько процессов. Самым распространенным в настоящее время формализмом, описывающим структуру и взаимодействие параллельных систем и процессов, являются сети Петри (англ. Petri Nets), предложенные К. Петри.
Теория сетей Петри развивается в нескольких направлениях:
разработка математических основ,
структурная теория сетей,
различные приложения (параллельное программирование, дискретные динамические системы и т. д.).
Типовые N-схемы на основе обычных размеченных сетей Петри пригодны для описания в моделируемой системе S событий произвольной длительности. В этом случае модель, построенная с использованием таких N-схем, отражает только порядок наступления событий в исследуемой системе S. Для отражения временных параметров процесса функционирования моделируемой системы S на базе N-схем используется расширение аппарата сетей Петри: временные сети, E-сети.
A-схемы (Комбинированные модели)
Этот подход позволяет описывать поведение непрерывных и дискретных, детерминированных и стохастических систем, т. е. по сравнению с рассмотренными является обобщенным (универсальным) и базируется на понятии агрегативной системы (от англ. aggregate system), представляющей собой формальную схему общего вида, которую будем называть А-схемой. Такая схема должна одновременно выполнять несколько функций:
являться адекватным математическим описанием системы S;
служить основой для построения алгоритмов и программ при машинной реализации модели М;
позволять в упрощенном варианте (для частных случаев) проводить аналитические исследования.
Применение агрегативного подхода при моделировании систем дает ряд преимуществ по сравнению с другими, менее универсальными подходами. Так, агрегативный подход в силу модульной структуры модели и дискретного характера обмена сигналами дает возможность использовать внешнюю память ЭВМ для хранения сведений о моделируемых объектах, что в значительной степени снижает ограничения по сложности, возникающие при попытке представить процесс функционирования моделируемой системы S в целом как последовательность взаимосвязанных системных событий для записи его в виде моделирующего алгоритма или на языке имитационного моделирования.
- Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- Понятие модели системы.
- Определение понятия «моделирование».
- Использование гипотез и аналогий в исследовании систем.
- Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- Сущность системного подхода к моделированию систем.
- 2 Вариант
- Процесс функционирования системы.
- Классификационные признаки видов моделирования систем.
- Математическое моделирование систем.
- 9. Особенности имитационного моделирования систем.
- Метод статистического моделирования.
- 11.Критерии эффективности моделирования систем на эвм.
- Определение математической схемы.
- 13. Экзогенные и эндогенные переменные в модели объекта.
- 14. Закон функционирования системы.
- 15. Понятие алгоритма функционирования.
- 16. Определение статической и динамической моделей объекта.
- Типовые схемы, используемые при моделировании сложных систем и их элементов.
- Условия и особенности использования при разработке моделей систем различных типовых схем.
- Концептуальная модель системы.
- Группы блоков выделяемые при построении блочной конструкции модели системы.
- Сущность статистического моделирования систем.
- Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- Существующие методы проверки качества генераторов случайных чисел.
- Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- Виды факторов в имитационном эксперименте с моделями систем.
- Цель стратегического планирования машинных экспериментов.
- Цель тактического планирования машинных экспериментов.
- Точность и достоверность результатов моделирования систем.
- Сущность фиксации и обработки результатов при статистическом моделировании систем.
- Место имитационных моделей при машинном синтезе систем.
- Способы построения моделирующих алгоритмов q –схем.
- Синхронный и асинхронный моделирующие алгоритмы q –схем.
- Суть структурного подхода при моделировании систем на базе n –схем.
- 34. Особенности формализации процессов функционирования систем на базе а – схем.
- Информационная модель системы.
- Характерные черты эволюционных моделей систем.
- 37.Роль эталонной модели в контуре управления.
- 38.Виды моделей, используемых для принятия решений.
- 39.Суть адаптации применительно к системам управления различными объектами.
- 40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- 41.Какой процесс, протекающий в системе, называется Марковским?
- 42.Какой процесс называется процессом с дискретным состоянием?
- 43.Какой процесс называется процессом с непрерывным временем?
- 44. Что такое поток событий?
- 45. Что такое интенсивность потока событий?
- Какой поток событий называется стационарным?
- 47. Какой поток событий называется ординарным?
- 48.Какой поток событий называется простейшим?
- 49.Как ведут себя смо с ограниченной очередью?
- 50.Чем отличаются динамические системы от статических?
- 51.Как выбирается частота дискретизации (теорема Котельникова)?
- Вопрос 52. Что представляет собой динамический ряд?
- Типы динамических рядов
- Вопрос 53. Чем характеризуется динамическая система?
- Вопрос 54. Что такое порядок динамической системы?
- Вопрос 55. Что характеризуют параметры динамической системы k и t?
- 56.Передаточная функция звена первого порядка.
- 57.Передаточная функция звена второго порядка.
- 58.Переходная функцией (или переходная характеристикой) динамической системы ?
- 59.Функция Хэвисайда от времени 1[t].
- 60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- 61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- Определение коэффициентов по методу Эйлера-Фурье.
- 62.Ряд Фурье для нечетной функции.
- 63.Ряда Фурье для четной функции.
- 64.Как вычисляется составляющие ачх (Si)?
- 65.Как вычисляется составляющие фчх (ϕi)?
- 66.Обратное преобразование Фурье для Si, ϕi.
- 67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- 68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- 69.Основное уравнение динамики.
- 70.Формулой Эйлера.
- 71.Формулой Эйлера при Δt≠0.
- 72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- 73.Как обозначают порядок зависимости точности от величины шага?
- 74.Каков и по какой причине порядок точности у метода Эйлера?
- 75.В каких случаях численный метод обладает сходимостью?
- Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- В общем случае это неравенство можно представить в виде:
- 76.Какая характеристика сходимости интересует исследователей?
- 77.Что понимается под неустойчивостью метода?
- 78.Что обеспечивает устойчивость метода?
- 79.Что обеспечивает сходимость метода?
- 80. Идея уточненного метода Эйлера.
- Сущность другого варианта модифицированного метода Эйлера
- Какова точность метода Рунге-Кутта?
- Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- 94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- 95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- 96.Что представляет собой критерий согласия Стьюдента и как он используется?
- 97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- 98.Каким образом следует вбирать число реализаций опыта?
- 99.Объясните смысл понятия «мощность критерия».
- 100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?