logo search
ответы по МС v

Определение коэффициентов по методу Эйлера-Фурье.

существует ряд функций, которые можно представить в виде бесконечного тригонометрического ряда. Для того, что бы установить возможность разложения некоторой функции , имеющей период в тригонометрический ряд вида:

(4)

нужно иметь набор коэффициентов

Прием для нахождения этих коэффициентов во второй половине XVIII века был применен Эйлером и независимо от него в начале XIX века—Фурье.

Впредь будем предполагать функцию непрерывной или кусочно-непрерывной в промежутке .

Допустим, что разложение (4) имеет место. Проинтегрируем его почленно от до ; в результате получим:

Но, как легко видеть,

(5)

Поэтому все члены под знаком суммы будут равняться нулю, и окончательно получаем

(6)

Для того чтобы найти значение коэффициента , умножим обе части равенства (4) на и снова проинтегрируем почленно в том же промежутке:

В виду (5) .

если , и, наконец,

(9)

Таким образом, обращаются в нуль все интегралы под знаком суммы, кроме интеграла, при котором множителем стоит именно коэффициент . Отсюда получаем:

Аналогично, умножая разложение (4) на и затем, интегрируя почленно, определим коэффициент при синусе:

Формулы, по которым вычисляются коэффициенты , называются формулами Эйлера-Фурье, а сами коэффициенты называются коэффициентами Фурье для данной функции. И, наконец, тригонометрический ряд (4), составленный по этим коэффициентам, получил название ряд Фурье для данной функции.