logo search
ответы по МС v

Место имитационных моделей при машинном синтезе систем.

Имитационное моделирование

При имитационном моделировании реализующий модель алго­ритм воспроизводит процесс функционирования системы S во вре­мени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последователь­ности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики систе­мы S.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно про­сто учитывать такие факторы, как наличие дискретных и непрерыв­ных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто созда­ют трудности при аналитических исследованиях. В настоящее время имитационное моделирование — наиболее эффективный метод ис­следования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы.

Когда результаты, полученные при воспроизведении на имита­ционной модели процесса функционирования системы S, являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведе­ние с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Пер­воначально был разработан метод статистических испытаний, пред­ставляющий собой, численный метод, который применялся для мо­делирования случайных величин и функций, вероятностные харак­теристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.о. появился метод стати­стического моделирования. Таким образом, методом статистического моделирования будем в дальнейшем назы­вать метод машинной реализации имитационной модели, а мето­дом статистических испытаний (Монте-Карло) — числен­ный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управле­ния системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в ос­нову структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая являет­ся оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алго­ритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска оптимального варианта системы.