Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
Метод Рунге-Кутты используют для расчета стандартных моделей достаточно часто, так как при небольшом объеме вычислений он обладает точностью метода Ο4(h).
Функция по методу Рунге-Кутта принимает вид:
Та же схема в форме разностного аналога уравнения (1):
Геометрические построения показывают, что получаемое в такой последовательности решение лежит «ближе» к истинному, чем вычисляемое по схеме Эйлера, то есть следует ожидать более высокой точности решения, получаемого методом Рунге-Кутты. Ранее мы назвали эту схему «модифицированным методом Эйлера».
| ||
Рис. 15.1. Иллюстрация расчета на шаге методом Рунге-Кутты при значении параметра α = 1 |
84.Указать разложение исходной функции в ряд по методу Рунге-Кутта.
Для построения разностной схемы интегрирования воспользуемся разложением функции
в ряд Тейлора:
Заменим вторую производную в этом разложении выражением
где
Причем Δx подбирается из условия достижения наибольшей точности записанного выражения. Для дальнейших выкладок произведем замену величины «y с тильдой» разложением в ряд Тейлора:
85.Как осуществляется замена по методу Рунге-Кутта?
где
86.Из каких соображений выдирается при замене по методу Рунге-Кутта?
Δx подбирается из условия достижения наибольшей точности записанного выражения.
87.В чем состоит подход при решении дифференциальных уравнений методом прогноза и коррекции?
Если требуется достичь ЛЮБОЙ точности на шаге, то следует использовать методы прогноза и коррекции. Этот подход состоит в том, что расчет траектории, задаваемой уравнением, на каждом шаге происходит многократно. А именно, сначала происходит расчет приближенного значения функции на конце шага какой-либо простой формулой (например, методом Эйлера), далее в этой точке вычисляется производная, и расчет происходит снова из начальной точки на шаге, но с уточненным значением производной. Последняя операция — уточнения производной и значения функции на конце шага — происходит МНОГОКРАТНО НА КАЖДОМ ШАГЕ, то есть до тех пор, пока вычисленные значения (функции и производной в конце шага) не перестанут меняться или будут меняться уже незначительно, меньше чем задаваемая заранее величина ε. Только тогда можно сказать, что точность ε достигнута.
88.По какой причине метод прогноза и коррекции не используется в системах реального времени?
Итак, за счет итерационной процедуры на каждом отдельном шаге можно достичь любой, наперед заданной точности ε. За такое достоинство метода приходится платить: к сожалению, невозможно сказать заранее, сколько итераций потребуется для достижения на шаге заданной точности ε. Поэтому такие методы нельзя, например, использовать в системах реального времени.
89.Предсказывающая формула метод Эйлера с итерациями.
Предсказывающая формула вычисляет (прогнозирует) значение функции на правом конце шага:
yk + 1 = yk + fk · Δt.
90.Уточняющая формула метод Эйлера с итерациями.
Уточняющая формула, используя старое значение производной (с шага 1) и уточненное с шага 2, дает уточненное значение yk + 1: yk + 1 = yk + (fk + fk + 1) · Δt/2. Здесь же производится подсчет итераций счетчиком i: i := i + 1.
91.Предсказывающая формула метод Милна с итерациями.
По предсказывающей формуле вычисляется грубое значение y на правом конце интервала
yk + 1 = yk – 3 + 4/3 · (2 · fk – fk – 1 + 2 · fk – 2) · Δt.
92.Уточняющая формула метод Милна с итерациями.
yk + 1 по уточненной формуле, используя уже новое значение производной в точке k + 1:
yk + 1 = yk – 1 + 1/3 · (fk + 1 + 4 · fk + fk – 1) · Δt.
93.Что представляет собой критерий согласия Пирсона и каким образом его можно применять?
Существует ряд критериев согласия. Чаще применяют критерии Пирсона, Романовского и Колмогорова.
Критерий согласия Пирсона – один из основных: где k – число групп, на которые разбито эмпирическое распределение, – наблюдаемая частота признака в i-й группе, – теоретическая частота. Для распределения составлены таблицы, где указано критическое значение критерия согласия для выбранного уровня значимости и степеней свободы df.(или ) Критерий согласия Пирсона используется, если объем совокупности достаточно велик , при этом частота каждой группы должна быть не менее 5.
- Вопросы к государственному экзамену Дисциплина «Моделирование систем»
- Понятие модели системы.
- Определение понятия «моделирование».
- Использование гипотез и аналогий в исследовании систем.
- Отличие использования метода моделирования при внешнем и внутреннем проектировании систем
- Сущность системного подхода к моделированию систем.
- 2 Вариант
- Процесс функционирования системы.
- Классификационные признаки видов моделирования систем.
- Математическое моделирование систем.
- 9. Особенности имитационного моделирования систем.
- Метод статистического моделирования.
- 11.Критерии эффективности моделирования систем на эвм.
- Определение математической схемы.
- 13. Экзогенные и эндогенные переменные в модели объекта.
- 14. Закон функционирования системы.
- 15. Понятие алгоритма функционирования.
- 16. Определение статической и динамической моделей объекта.
- Типовые схемы, используемые при моделировании сложных систем и их элементов.
- Условия и особенности использования при разработке моделей систем различных типовых схем.
- Концептуальная модель системы.
- Группы блоков выделяемые при построении блочной конструкции модели системы.
- Сущность статистического моделирования систем.
- Способы генерации последовательностей случайных чисел используемые при моделировании на эвм.
- Существующие методы проверки качества генераторов случайных чисел.
- Характерные особенности машинного эксперимента по сравнению с другими видами экспериментов.
- Виды факторов в имитационном эксперименте с моделями систем.
- Цель стратегического планирования машинных экспериментов.
- Цель тактического планирования машинных экспериментов.
- Точность и достоверность результатов моделирования систем.
- Сущность фиксации и обработки результатов при статистическом моделировании систем.
- Место имитационных моделей при машинном синтезе систем.
- Способы построения моделирующих алгоритмов q –схем.
- Синхронный и асинхронный моделирующие алгоритмы q –схем.
- Суть структурного подхода при моделировании систем на базе n –схем.
- 34. Особенности формализации процессов функционирования систем на базе а – схем.
- Информационная модель системы.
- Характерные черты эволюционных моделей систем.
- 37.Роль эталонной модели в контуре управления.
- 38.Виды моделей, используемых для принятия решений.
- 39.Суть адаптации применительно к системам управления различными объектами.
- 40.Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.
- 41.Какой процесс, протекающий в системе, называется Марковским?
- 42.Какой процесс называется процессом с дискретным состоянием?
- 43.Какой процесс называется процессом с непрерывным временем?
- 44. Что такое поток событий?
- 45. Что такое интенсивность потока событий?
- Какой поток событий называется стационарным?
- 47. Какой поток событий называется ординарным?
- 48.Какой поток событий называется простейшим?
- 49.Как ведут себя смо с ограниченной очередью?
- 50.Чем отличаются динамические системы от статических?
- 51.Как выбирается частота дискретизации (теорема Котельникова)?
- Вопрос 52. Что представляет собой динамический ряд?
- Типы динамических рядов
- Вопрос 53. Чем характеризуется динамическая система?
- Вопрос 54. Что такое порядок динамической системы?
- Вопрос 55. Что характеризуют параметры динамической системы k и t?
- 56.Передаточная функция звена первого порядка.
- 57.Передаточная функция звена второго порядка.
- 58.Переходная функцией (или переходная характеристикой) динамической системы ?
- 59.Функция Хэвисайда от времени 1[t].
- 60.Уравнение ряда Фурье и коэффициентов а0, Аi, Bi .
- 61.Процесс вычисления коэффициентов а0, Аi, Bi ряда Фурье?
- Определение коэффициентов по методу Эйлера-Фурье.
- 62.Ряд Фурье для нечетной функции.
- 63.Ряда Фурье для четной функции.
- 64.Как вычисляется составляющие ачх (Si)?
- 65.Как вычисляется составляющие фчх (ϕi)?
- 66.Обратное преобразование Фурье для Si, ϕi.
- 67.Достоинства представления сигнала и динамической системы в виде Фурье представления при моделировании
- 68.К чему свелось моделирование прохождения сигнала через динамический объект в виде Фурье представления?
- 69.Основное уравнение динамики.
- 70.Формулой Эйлера.
- 71.Формулой Эйлера при Δt≠0.
- 72.Как изменяется t (счетчик t) и y при алгоритмической реализации расчет циклом по методу Эйлера?
- 73.Как обозначают порядок зависимости точности от величины шага?
- 74.Каков и по какой причине порядок точности у метода Эйлера?
- 75.В каких случаях численный метод обладает сходимостью?
- Сходимость означает, что погрешность каждого последующего приближения должна быть меньше погрешности предыдущего приближения, т.Е. Погрешность приближенных значений с каждым шагом должна уменьшаться:
- В общем случае это неравенство можно представить в виде:
- 76.Какая характеристика сходимости интересует исследователей?
- 77.Что понимается под неустойчивостью метода?
- 78.Что обеспечивает устойчивость метода?
- 79.Что обеспечивает сходимость метода?
- 80. Идея уточненного метода Эйлера.
- Сущность другого варианта модифицированного метода Эйлера
- Какова точность метода Рунге-Кутта?
- Какая функция по методу Рунге-Кутта используется для построения разностной схемы интегрирования?
- 94.Что представляет собой критерий согласия Фишера и каким образом его можно применять?
- 95.Что представляет собой критерий Смирнова и каким образом его можно использовать?
- 96.Что представляет собой критерий согласия Стьюдента и как он используется?
- 97.Объясните смысл понятий: несмещенность оценки, эффективность оценки, состоятельность оценки.
- 98.Каким образом следует вбирать число реализаций опыта?
- 99.Объясните смысл понятия «мощность критерия».
- 100 Каким образом можно выбирать границы для оценки моделируемой случайной величины?