logo

9.4. Ядерные и термоядерные реакции

Реакция деления ядер была открыта в 1938 – 1939 годах (Ферми, Ган, Штрассман, Жолио-Кюри). Было доказано, что ядро урана при столкновении с нейтроном делится на два осколка.

Особенности этой реакции: а) деление тяжёлого ядра сопровождается освобождением большой энергии (около 200МэВ) на каждое разделившееся ядро; б) при расщеплении ядер выделяются вторичные нейтроны (от одного до трёх на каждый акт деления). Наличие вторичных нейтронов при условии, что вещество имеет массу больше критической, может привести к цепной реакции деления.

Термоядерные реакции – это реакции синтеза ядер, происходящие при высоких температурах. Они играют огромную роль в жизни Вселенной, являясь основным источником энергии звёзд. Большой интерес представляет и возможность реализации управляемых термоядерных реакций, поскольку из всех известных науке превращений веществ, происходящих с выделением энергии, эти реакции дают максимум энергии, отнесённой к единице массы. В качестве «горючего» для таких реакций может быть использован целый ряд веществ (дейтерий, тритий и др.)

В принципе уже сегодня энергию термоядерного синтеза можно получить на Земле. Нагреть вещество до звёздных температур можно, используя энергию атомного взрыва. Так устроена водородная бомба, где взрыв ядерного запала приводит к мгновенному нагреву смеси дейтерия с тритием и последующему термоядерному взрыву. Но это неуправляемый процесс.

Для осуществления управляемого ядерного синтеза требуется несколько условий. Во-первых, нужно нагреть термоядерное горючее до температуры, когда реакции синтеза могут происходить с заметной вероятностью. Во-вторых, необходимо, чтобы при синтезе выделялось больше энергии, чем её затрачивается на нагрев вещества.

Для осуществления термоядерной реакции наиболее выгодна температура около 100 млн. градусов. Что касается времени удержания энергии, т. е. качества изоляции, то в данном случае условие следующее: плазма с плотностью 1014 ионов в 1 см3 должна заметно остывать не быстрее, чем за 1 секунду.

Удержание плазмы от попадания на теплоизолирующие стенки осуществляется при помощи магнитных полей, направляющих поток частиц по спирали, замкнутой в кольцо. Так как плазма состоит из ионов и электронов, магнитное поле имеет на неё прямое влияние.

Для нагрева можно использовать ток, протекающий по плазменному «шнуру». Есть и другие способы нагрева – высокочастотными электромагнитными волнами, пучками быстрых частиц, световыми пучками, генерируемыми лазерами.

Чем больше мощность нагревающего устройства, тем быстрее можно разогреть плазму до требуемой температуры. Последние разработки позволяют это делать за столь короткое время, что вещество успевает вступить в реакцию синтеза раньше, чем разлететься из-за теплового движения. В таких условиях дополнительная термоизоляция оказывается ненужной. Единственное, что удерживает частицы от разлета, это их собственная инерция. Данное направление – инерционный термоядерный синтез – усиленно развивается в последнее время.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4