logo

9.3. Дефект массы и энергия связи ядра. Явление радиоактивности. Виды радиоактивного распада

Масса ядра определяется массой входящих в его состав нейтронов и протонов. Поскольку любое ядро состоит из Z протонов и N = A – Z нейтронов, где A – массовое число (число нуклонов в ядре), то на первый взгляд масса ядра должна просто равняться сумме масс протонов и нейтронов. Однако, как показывают результаты измерений, реальная масса ядра всегда меньше такой суммы. Их разность получила название дефекта массы Δm.

Энергия – одна из важнейших характеристик протекания любых физических процессов. В ядерной физике её роль особенно велика, поскольку незыблемость закона сохранения энергии позволяет делать достаточно точные расчёты даже в тех случаях, когда многие детали явлений остаются неизвестными.

Разорвать ядро на отдельные нуклоны можно, лишь введя в него извне каким-либо способом энергию не меньше той, что выделилась в процессе его образования. Это и есть энергия связи ядра Есв. С энергией связи непосредственно связано происхождение дефекта массы. В соответствии с формулой Эйнштейна: ЕСВ = Δmc², Дж, уменьшение энергии системы при образовании ядра на какую-то величину должно неизбежно приводить к уменьшению общей массы.

В общем виде формулу для определения дефекта массы Δm можно представить так: Δm = Z ∙ mP + (A – Z)mn – mЯ,

где A – массовое число, Z – число протонов, (A – Z) – число нейтронов, mЯ – масса ядра, mР и mn – массы протона и нейтрона.

У каждого нуклона есть ограниченный запас возможностей взаимодействия, и если этот запас уже израсходован на связь с двумя-тремя соседними нуклонами, то остальные связи оказываются ослабленными даже на очень близких расстояниях.

Наиболее прочными являются ядра со средними массовыми числами. В лёгких ядрах все или почти все нуклоны лежат вблизи на поверхности ядра, и поэтому не в полной мере используют свои возможности взаимодействия, что несколько уменьшает удельную энергию связи. С ростом массового числа увеличивается доля нуклонов, лежащих в глубине ядра, которые свои возможности могут использовать полностью, поэтому значение удельной энергии связи постоянно увеличивается. При дальнейшем увеличении массового числа начинает всё сильнее сказываться взаимное отталкивание протонов, которое стремится разорвать ядро и поэтому уменьшает удельную энергию связи. Это приводит к тому, что все тяжёлые ядра оказываются нестабильными.

Радиоактивность – способность некоторых ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием микрочастиц.

К радиоактивным превращениям относятся: альфа-распад, все виды бета-распада, спонтанное деление ядер и др. Существует естественная и искусственная радиоактивность. Процесс радиоактивного превращения в обоих случаях подчиняется закону радиоактивного распада:

где N0 - количество ядер в начальный момент отсчёта (t = 0),

N - число еще не распавшихся ядер в момент времени t,

λ - постоянная радиоактивного распада.

Время, за которое распадается половина первоначального количества ядер, называют периодом полураспада T: T = ℓn2/λ = 0,693/λ