3. 2. Принципы относительности и инвариантность. Симметрия
Установлено, что во всех инерциальных системах отсчета (движущихся без ускорения) законы классической динамики имеют одинаковую форму; в этом сущность механического принципа относительности – принципа относительности Галилея. Он означает, что уравнения динамики при переходе от одной инерциальной системы к другой не изменяются, т. е. инвариантны по отношению к преобразованию координат. Галилей обратил внимание на то, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, движется ли корабль, не выглянув в окно.
Пуанкаре распространил принцип относительности на все электромагнитные процессы, а Эйнштейн использовал его для частной теории относительности.
Вместе с принципом относительности в физике утвердились понятия инвариантности, инвариантов и симметрии, а также связь их с законами сохранения и вообще с законами природы.
Инвариантность означает неизменность физических величин или свойств природных объектов при переходе от одной системы отсчета к другой. Из частной теории относительности вытекает ряд инвариантов для инерциальных систем отсчета: скорость света, масса, электрический заряд, интервал и д.р. Они остаются неизменными относительно преобразований Лоренца, предложенных им в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла инвариантны.
Релятивистский эффект замедления времени экспериментально подтвержден при исследовании нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с пи-мезонами.
Частная теория относительности, принципы которой сформулировал в 1905 г. А.Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Частную теорию относительности часто называют релятивистской теорией, а специфические явления, описываемые этой теорией, - релятивистским эффектом. В основе частной теории относительности лежат постулаты Эйнштейна:
1)принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;
2) принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника или наблюдателя, и одинакова во всех инерциальных системах отсчета (с = 3 108м/с).
В соответствии с первым постулатом все инерциальные системы отсчета совершенно равноправны, т.е. явления механические, электродинамические, оптические и другие во всех инерциальных системах отсчета протекают одинаково.
Согласно второму постулату постоянство скорости света в вакууме – фундаментальное свойство природы. Она не зависит от скорости движения источника и приемника света.
Частная теория относительности потребовала отказа от привычных классических представлений о пространстве и времени, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.
Из частной теории относительности следуют новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени.
Симметрия – это инвариантность в неизменности свойств системы при изменении (преобразовании) её параметров. Так кристалл может быть совместим с самим собой путем поворотов, отражений, параллельных переносов и других преобразований системы.
Крупнейшие открытия в физике ХХ века связаны с изучением различных симметрий. Можно расширить понятие симметрии и назвать группой симметрии такие преобразования пространства и времени, при которых формы записи уравнений или комбинации физических величин остаются неизмененными. В этом смысле говорят о симметрии физических законов, исследовании свойств симметрии физических явлений для познания фундаментальных закономерностей Природы. Вся гармония Природы должна, в конечном счете, быть выражена и обобщена принципиальным математическим единством её законов.
- Федеральное агентство по образованию
- Введение
- 1. Панорама современного естествознания
- 1.1. Естественнонаучная и гуманитарная культура
- 1.2.Научный метод
- 1.3. История развития естествознания
- 1.4.Физика - основа современного естествознания
- 2. Иерархия структур в микро-, макро- и мегамире
- Звёзды. Галактики. Вселенная
- 3. Представление о концепциях материи, движения, пространства и времени
- 3.1.Основные свойства пространства и времени
- 3. 2. Принципы относительности и инвариантность. Симметрия
- 4. Механическое движение. Классическая концепция Ньютона
- 4.1. Физические величины и их единицы измерения
- 4.2. Классическая концепция Ньютона
- Силы. Закон всемирного тяготения
- Закон сохранения импульса
- 4.3. Работа, мощность, энергия
- 4.4. Закон сохранения механической энергии
- 4.5. Общефизический закон сохранения энергии
- 5. Колебания и волны
- 5.1. Гармонические колебания и их характеристики
- 5.2. Вынужденные колебания. Резонанс
- 5.3. Волновые процессы
- 5.4. Свойства волн: интерференция, дифракция
- 6. Фундаментальные взаимодействия
- 6.1. Концепции близкодействия и дальнодействия
- 6.2 Виды фундаментальных взаимодействий
- 6.3. Понятие физического поля
- 6.4. Гравитационное поле
- 6.5. Электромагнитные поля и волны
- 6.6. Принцип суперпозиции
- 6.7. Шкала электромагнитных волн
- 7. Статистические и термодинамические свойства макросистем
- 7.1. Основные понятия молекулярной физики
- 7.2. Термодинамические законы
- 7.3. Энтропия
- 7.4. Второе начало термодинамики
- 7.5. Термодинамика открытых систем
- 8. Концепция корпускулярно-волнового дуализма
- 8.1. Природа света
- 8.2. Корпускулярно-волновые свойства микрочастиц
- 8.3. Принципы неопределённости и дополнительности
- 9. Элементы атомной и ядерной физики
- 9.1. Физика атома
- 9.2. Строение атомного ядра
- 9.3. Дефект массы и энергия связи ядра. Явление радиоактивности. Виды радиоактивного распада
- 9.4. Ядерные и термоядерные реакции
- 9.5. Воздействие излучения на человека. Радиационно-биологические процессы
- 10. Развитие химических концепций
- 10.1. Эволюция химических знаний
- 10.2. Основные понятия химии
- 10.3. Периодическая система химических элементов д.И. Менделеева и её современный вид
- 10.4. Виды химической связи
- 10.5. Реакционная способность веществ. Химические реакции
- Скорость химических реакций. Современный катализ
- Обратимые и необратимые химические реакции
- Принцип Ле Шателье
- Тепловой эффект реакции
- 10.6. Методы качественного и количественного анализа
- 10.7. Синтез вещества
- 11. Мегамир: современные космологические концепции
- 11.1. Концепции эволюции Вселенной
- 11.2. Концепции эволюции звездных объектов
- Черные дыры
- Белые карлики
- Нейтронные звезды
- Пульсары
- Квазары
- 11.3. Концепции эволюции Солнечной системы
- 12. Планета Земля и современные представления о литосфере
- 12.2. Теория литосферных плит
- 12.3. Географическая оболочка Земли
- 12.4. Условия, способствующие возникновению жизни на Земле.
- 13. Биосфера. Биологические концепции
- 13.1. Развитие биологических концепций
- 13.2. Концепции происхождения жизни
- 13.3. Принципы развития, эволюции и воспроизводства живых систем
- 13.4. Биосфера и ее свойства
- 13.5. Биологические уровни организации материи
- 13.6. Генетика и эволюция
- 14.Экология в современном мире
- 14.1. Основные направления экологии
- 14.2. Вредные вещества и их реальная опасность
- 14.3. Сохранение озонового слоя
- 14.4. Кислотные осадки
- 14.5. Парниковый эффект
- 14.6. Захоронение радиоактивных отходов
- 15. Феномен Человек
- 15.1. Возникновение человека
- 15.2. Человек: физиология, здоровье, работоспособность, эмоции
- 15.3. Творчество
- 15.4. Биоэтика
- 15.5. Космические и биологические циклы
- 16.Самоорганизация в природе
- 16.1. Синергетика - новая междисциплинарная наука
- 16.2. Порядок из хаоса
- 16.3. Диссипативные структуры
- 16.4. Концепции самоорганизации
- Принцип универсального эволюционизма. Путь к единой культуре