logo
2 Эволюция Вселенной

Масса и размер галактик

Галактики не имеют четких границ. Нельзя точно сказать, где кончается галактика и начинается межгалактическое пространство. К примеру, если в оптическом диапазоне галактика имеет один размер, то определяемый по радионаблюдениям межзвездного газа радиус галактики может оказаться в десятки раз больше.

Закон Хаббла

Закон Хаббла установлен экспериментально Э. Хабблом в 1929 году для галактик с помощью телескопа, который разрешает ближайшие галактики на звезды.

Математически он формулируется очень просто:

v = H r

где v – скорость удаления галактики от нас,

r – расстояние до нее,

H – постоянная Хаббла.

Современное значение постоянной Хаббла составляет 74,2 ± 3,6 км/с на мегапарсек.

    1. Проблема оценки Н осложняется тем, что, помимо космологических скоростей, обусловленных расширением Вселенной, галактики еще обладают собственными (пекулярными) скоростями, которые могут составлять несколько сотен км/с (для членов массивных скоплений галактик – более 1000 км/с). Это приводит к тому, что закон Хаббла плохо выполняется или совсем не выполняется для объектов, находящихся на расстоянии ближе 10 – 15 млн св. лет, то есть как раз для тех галактик, расстояния до которых наиболее надежно определяются без красного смещения.

Закон Хаббла плохо выполняется и для галактик на очень больших расстояниях (в миллиарды св. лет). Расстояния до таких объектов теряют однозначность, поскольку зависят от принимаемой модели Вселенной.

Возможная нелинейность закона

В наше время наблюдениями, говорящими в пользу существования темной энергии, были, по-видимому, обнаружены отклонения от линейного закона Хаббла. Было обнаружено, по-видимому, что наша Вселенная расширяется с ускорением. Этот факт не отменяет закона Хаббла, так как последний действует на более близких расстояниях, чем эти новые эффекты.

ТЕОРИЯ БОЛЬШОГО ВЗРЫВА

Большой взрыв (от англ. Big Bang) – гипотетическое начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

    1. Современные представления теории Большого взрыва и

    2. теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,73 ± 0,12 млрд. лет назад из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 K (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время – 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу – образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза – образования ядер: протоны, объединяясь с нейтронами, образовывали ядра дейтерия (дейтерий – тяжелый водород, ядро которого состоит из двух нейтронов и одного протона), гелия-4 (ядро гелия-4 состоит из двух протонов и двух нейтронов) и др. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода. Излучение перестало взаимодействовать с материей, стало свободно распространяться в пространстве и дошло до нас в виде реликтового излучения.