Аэродинамические схемы ла
Планером называется конструкция, объединяющая корпус, крылья, органы управления и стабилизации в единую аэродинамическую схему. Он предназначен для создания управляющих сил и размещения всей аппаратуры ракеты. Корпус планера обычно цилиндрической формы, за исключением ракеты типа «несущий конус», с конической (сферической) головной частью. Форма корпуса и головной части выбирается в целях получения наименьшей силы лобового сопротивления ракеты при полете. Материалом для корпуса служат легкие прочные металлы и сплавы
Аэродинамические поверхности планера служат для создания подъемной и управляющих сил. Подъемная сила, которая возникает при взаимодействии ракеты с воздухом во время ее полета, обеспечивает удержание ЛА в воздухе. Управляющие силы необходимы для изменения направления полета ракеты.
Различают подвижные и неподвижные аэродинамические поверхности (АП). Подвижные АП, предназначенные для управления полетом и стабилизацией ЛА, называются рулями, поворотными крыльями. Свои функции они выполняют путем поворота вокруг осей, перпендикулярных продольной оси корпуса ракеты, либо при выдвижении из корпуса на определенное время и в определенной последовательности.
Неподвижные АП служат для стабилизации полета ЛА (стабилизаторы) и для создания подъемной силы (несущие крылья, поверхности). По взаимному расположению рулей и неподвижных аэродинамических поверхностей можно выделить следующие аэродинамические схемы ракет (рис.30):
- нормальная или обычная;
- «утка»;
- «бесхвостка»;
- «поворотное крыло»;
В нормальной схеме рули и стабилизатор располагаются позади крыльев в хвостовой части ракеты.
Схема «бесхвостка». Данная схема является разновидностью нормальной схемы. Здесь крылья выполняют одновременно функции крыльев и стабилизаторов и отличаются большей стреловидностью и малым размахом. С целью увеличения подъемной силы в этой схеме увеличена площадь крыльев. При этом рули оказываются расположенными непосредственно за крыльями и связываются с ними конструктивно.
В аэродинамической схеме «утка» рули находятся в головной части ракеты (впереди центра масс), а крылья, выполняющие и функцию стабилизатора, расположены в хвостовой части корпуса ракеты. Эта схема удобна с точки зрения компоновки ракеты, так как рулевые машинки могут быть расположены близко к рулям. При такой компоновке ракеты подъемная сила рулей совпадает по направлению с подъемной силой крыльев и корпуса. Однако расположение рулей в носовой части ракеты и возникновение скоса воздушного потока при отклонении рулей приводит к потере подъемной силы на крыльях и возникновению значительных моментов крена. Чтобы избежать «момента косой обдувки» крыльевой блок делается вращающимся вокруг оси ракеты, что позволяет избежать воздействия скоса воздушного потока на них.
В схеме «поворотное крыло» подвижные поверхности (поворотные крылья) располагаются в районе центра тяжести и наряду с функцией крыла выполняют функцию рулей, а неподвижные стабилизаторы расположены в хвостовой части корпуса.
Рис. 30 Аэродинамические схемы: а)Нормальная; б)"Бесхвостка"; в)"Утка"; г)"Поворотное крыло".
Принципиально не существует наилучшей аэродинамической схемы. Выбор схемы аэродинамической компоновки определяется требуемыми высотами и дальностями полета ракеты, маневренностью и составом бортовой аппаратуры.
Таблица
- Классификация ракет
- Основные задачи, решаемые для баллистической ракеты
- Движение, форма и гравитационное поле Земли Движение Земли
- Форма Земли
- Гравитационное поле Земли
- Атмосфера
- Системы координат Определение положения точки на земной поверхности
- Уравнение движения точки переменной массы
- Теорема об изменении количества движения системы материальных точек
- Формула Циолковского
- Системы координат
- Силы и моменты, действующие на ракету в полете. Аэродинамические силы
- Отличие реальной скорости ракеты от характеристической
- Потери скорости
- Особенности аэродинамических характеристик
- Аэродинамические моменты
- Коэффициент центра давления длинных тел
- Демпфирующий момент
- Управляющие силы и моменты
- Органы управления Управляющие моменты
- Основные типы органов управления баллистических ракет
- Сила тяги реактивного (ракетного) двигателя
- Реактивный момент
- Аэродинамические схемы ла
- Основные достоинства и недостатки аэродинамических схем
- Типовые формы корпусов
- Конструктивно-компоновочная схема ракеты
- Компоновочные схемы ракет-носнтелей
- Двигательные установки и системы управления
- Возмущающие силы и моменты
- Атмосферные возмущения
- Расчет траектории управляемых баллистических ракет (убр) Общий вид траектории убр и параметры активного участка
- Требования к траектории
- Использование формулы Циолковского при проектировании ракет
- Пример расчёта массы ракеты
- Приращение скорости ракеты
- Соотношение масс ступеней ракеты
- Элементы небесной механики
- Законы Кеплера
- Орбитальные скорости планет солнечной системы
- Орбиты космических аппаратов вокруг Земли
- Вычисление параметров геостационарной орбиты Радиус орбиты и высота орбиты
- Орбитальная скорость
- Длина орбиты
- Недостатки геостационарной орбиты
- Скорости движения космических аппаратов на орбитах разного типа
- Космическая скорость
- Первая (круговая) и вторая космическая скорость (скорость освобождения) на поверхности некоторых небесных тел
- Схемы выведения космических аппаратов
- Активное маневрирование на космических орбитах
- Библиографический список