34. Пространственное моделирование, его задачи.
Пространственное объединение отдельных элементов технического объекта широко распространенная задача проектирования в любой отрасли техники: радиоэлектроники, машиностроения, энергетики и т. д. Значительную частью пространственного моделирования доставляет визуализация отдельных элементов и технического объекта в целом Большой интерес представляют вопросы построения базы данных графических трехмерных моделей элементов, алгоритмы и программная реализация графических приложений для решения данной задачи.
Построение моделей элементов носит универсальный характер и может рассматриваться как инвариантная часть многих систем пространственного моделирования и автоматизированного проектирования технических объектов.
Независимо от возможностей используемой графической среды по характеру формирования графических моделей можно выделить три группы элементов:
1.Уникальные элементы, конфигурация и размеры которых не повторяются в других аналогичных деталях.
2.Унифицированные элементы, включающие некоторый набор Фрагментов конфигураций, характерных для деталей данного класса. Как правило, существует ограниченный ряд типоразмеров унифицированного элемента.
3.Составные элементы, включающие как уникальные, так и унифицированные элементы в произвольном наборе. Используемые графические средства могут допускать некоторую вложенность составных элементов.
Пространственное моделирование уникальных элементов не представляет большой сложности. Прямое формирование конфигурации модели выполняется в интерактивном режиме, после чего программная реализация оформляется на основе протокола формирования модели или текстового описания полученного элемента.
2.Поочередный выбор фрагментов пространственной конфигурации и определение их размеров;
3.Привязка графической модели элемента к прочим элемента, технического объекта или системы;
4.Ввод дополнительной информации о моделируемом элементе
Данный подход формирования моделей унифицированных элементов обеспечивает надежную программную реализацию.
Модель составных элементов состоит из совокупности модели как уникальных, так и унифицированных элементов. Процедурно модель составного элемента строится аналогично модели унифицированного элемента, в которой в качестве графических фрагменте: выступают готовые модели элементов. Основными особенностями являются способ взаимной привязки включаемых моделей и механик объединения отдельных фрагментов в составной элемент. Последнее определяется, главным образом, возможностями инструментальных графических средств.
Интеграция графической среды и системы управления базами данных (СУБД) технической информации обеспечивает открытость системы моделирования для решения других задач проектирования: предварительные конструкторские расчеты, подбор элементной базы, оформление конструкторской документации (текстовой и графической) и др. Структура баз данных (БД) определяется как требованиями графических моделей так и информационными потребностями сопутствующих задач. В качестве инструментальных средств возможно использовать любую СУБД, сопрягаемую с графической средой. Наиболее общий характер носит построение моделей унифицированных элементов. На первом этапе в результате систематизации номенклатуры элементов, однотипных по назначению и составу графических фрагментов, формируется гипотетический или выбирается существующий образец моделируемого элемента, обладающий полным набором моделируемых частей объекта.
Методы интерполяции по дискретно расположенным точкам.
Общая задача интерполяции по точкам формулируется так: дан ряд точек (узлов интерполяции), положение и значения характеристик в которых известны, необходимо определить значения характеристик для других точек, для которых известно только положение. При этом различают методы глобальной и локальной интерполяции, и среди них точные и аппроксимирующие.
При глобальной интерполяции для всей территории одновременно используется единая функция вычисления z = F(x,y) . В этом случае изменение одного значения (х, у) на входе сказывается на всей результирующей ЦМР. При локальной интерполяции многократно применяют алгоритм вычисления для некоторых выборок из общего набора точек, как правило, близко расположенных. Тогда изменение выбора точек сказывается лишь на результатах обработки небольшого участка территории. Алгоритмы глобальной интерполяции создают сглаженные поверхности с небольшим числом резких перепадов; они применяются в случаях, если предположительно известна форма поверхности, например тренд. При включении в процесс локальной интерполяции большой доли общего набора данных она, по сути, становится глобальной.
Точные методы интерполяции.
Точные методы интерполяции воспроизводят данные в точках (узлах), на которых базируется интерполяция, и поверхность проходит через все точки с известными значениями. анализ соседства, в котором все значения моделируемых характеристик принимаются равными значениям в ближайшей известной точке. В результате образуются полигоны Тиссена с резкой сменой значений на границах. Такой метод применяется в экологических исследованиях, при оценке зон воздействия, и больше подходит для номинальных данных.
В методе В-сплайнов строят кусочно-линейный полином, позволяющий создать серию отрезков, которые в конечном итоге образуют поверхность с непрерывными первой и второй производными. Метод обеспечивает непрерывность высот, уклонов, кривизны. Результирующая ЦМР имеет растровую форму. Этот метод локальной интерполяции применяется, главным образом, для плавных поверхностей и не годится для поверхностей с отчетливо выраженными изменениями - это приводит к резким колебаниям сплайна. Он широко используется в программах интерполяции поверхностей общего назначения и сглаживания изолиний при их рисовке.
В TIN-моделях поверхность в пределах каждого треугольника обычно представляется плоскостью. Поскольку для каждого треугольника она задается высотами трех его вершин, то в общей мозаичной поверхности треугольники для смежных участков точно прилегают по сторонам: образуемая поверхность непрерывна. Однако, если на поверхности проведены горизонтали, то в этом случае они будут прямолинейны и параллельны в пределах треугольников, а на границах будет происходить резкое изменение их направления. Поэтому для некоторых приложений TIN в пределах каждого треугольника строится математическая поверхность, характеризующаяся плавным изменением углов наклона на границах треугольников. Анализ трендов. Поверхность аппроксимируется многочленом и структура выходных данных имеет вид алгебраической функции, которую можно использовать для расчета значений в точках растра или в любой точке поверхности. Линейное уравнение, например, z = а + bх + су описывает наклонную плоскую поверхность, а квадратичное z = а + bх + су + dx2 + еху + fy2 -простой холм или долину. Вообще говоря, любое сечение поверхности т-го порядка имеет не более (т – 1) чередующихся максимумов и минимумов. Например, кубическая поверхность может иметь в любом сечении один максимум и один минимум. Возможны значительные краевые эффекты, поскольку полиномиальная модель дает выпуклую поверхность.
Методы скользящего среднего и среднего взвешенного по расстоянию используются наиболее широко, особенно для моделирования плавно меняющихся поверхностей. Интерполированные значения представляют собой среднюю величину значений для пизвестных точек, либо среднее, полученное по интерполируемым точкам, и в общем случае обычно представляются формулой
Аппроксимационные методы интерполяции.
Аппроксимационные методы интерполяции применяются в тех случаях, когда имеется некоторая неопределенность в отношении имеющихся данных о поверхности; в их основе лежит соображение о том, что во многих наборах данных отображается медленно изменяющийся тренд поверхности, на который накладываются местные, быстро меняющиеся отклонения, приводящие к неточностям или ошибкам в данных. В таких случаях сглаживание за счет аппроксимации поверхности позволяет уменьшить влияние ошибочных данных на характер результирующей поверхности.
Методы интерполяции по ареалам.
Интерполяция по ареалам заключается в переносе данных с одного исходного набора ареалов (ключевого) на другой набор (целевой) и часто применяется при районировании территории. Если целевые ареалы представляют собой группировку ключевых ареалов, сделать это просто. Трудности возникают, если границы целевых ареалов не связаны с исходными ключевыми.
Рассмотрим два варианта интерполяции по ареалам: в первом из них в результате интерполяции суммарное значение интерполируемого показателя (например, численности населения) целевых ареалов в полном объеме не сохраняется, во втором - сохраняется.
Представим, что имеются данные о численности населения для некоторых районов с заданными границами, и их нужно распространить на более мелкую сетку районирования, границы которой в общем не совпадают с первой.
Методика заключается в следующем. Для каждого исходного района (ключевого ареала) рассчитывают плотность населения путем деления общего количества проживающих на площадь участка и присваивают полученное значение центральной точке (центроиду). На основе этого набора точек с помощью одного из методов, описанных выше, интерполируется регулярная сетка, для каждой ячейки сети определяется численность населения путем умножения рассчитанной плотности на площадь ячейки. Интерполированная сетка накладывается на итоговую карту, значения по каждой ячейке относятся к границам соответствующего целевого ареала. Затем рассчитывается общая численность населения каждого из итоговых районов.
К недостаткам метода можно отнести не совсем четкую определенность выбора центральной точки; методы интерполяции по точкам неадекватны, и что важнее всего - не сохраняется суммарная величина интерполируемого показателя ключевых ареалов (в данном случае общей численности населения зон переписи). Например, если исходная зона разделена на две целевые, то общее количество населения в них после интерполяции не обязательно будет равно численности населения исходной зоны.
Во втором варианте интерполяции применяют способы ГИС-технологии оверлея или построения гладкой поверхности, основанного на так называемой адаптивной интерполяции.
В первом способе осуществляют наложение ключевых и целевых ареалов, определяют долю каждого из исходных ареалов в составе целевых, величины показателя каждого исходного ареала делят пропорционально площадям его участков в разных целевых ареалах. Считается, что плотность показателя в пределах каждого ареала одинакова, например, если показатель - это общее население ареала, то плотность населения считается для него постоянной величиной.
Целью второго способа является создание гладкой поверхности без уступов (значения атрибутов не должны резко изменяться на границах ареалов) и сохранение суммарной величины показателя в пределах каждого ареала. Методика его такова. На картограмму, представляющую ключевые ареалы, накладывают густой растр, общее значение показателя для каждого ареала поровну делится между ячейками растра, перекрывающими ее, значения сглаживают путем замены величины для каждой ячейки растра средним по окрестности (по окну 2×2, 3×3, 5×5) и суммируют значения для всех ячеек каждого ареала. Далее значения для всех ячеек корректируют пропорционально так, чтобы общее значение показателя для ареала совпадало с исходным (например, если сумма меньше исходного значения на 10%, значения для каждой ячейки увеличиваются на 10%). Процесс повторяют до тех пор, пока не. прекратятся изменения.
Для описанного метода однородность в пределах ареалов необязательна, но слишком сильные вариации показателя в их пределах могут отразиться на качестве интерполяции.
Результаты могут быть представлены на карте горизонталями или непрерывными полутонами.
Применение метода требует задания некоторых граничных условий, так как по периферии исходных ареалов элементы растра могут выходить за пределы области изучения или соседствовать с ареалами, не имеющими значения интерполируемого показателя. Можно, например, присвоить плотности населения значение 0 (озеро и т. п.) или принять ее равной значениям самых дальних от центра ячеек области изучения.
При интерполяции по ареалам могут возникнуть весьма сложные случаи, например, когда нужно создать карту, показывающую «ареалы расселения», на основе данных о населении отдельных городов, особенно если эти ареалы в масштабе карты показываются точкой. Проблема возникает и для небольших исходных ареалов, когда отсутствуют файлы границ, а в данных указывается только положение центральной точки. Здесь возможны разные подходы: замена точек, к которым приписаны данные, на круги, радиус которых оценивается по расстояниям до соседних центроидов; определение пороговой плотности населения для отнесения территории к городской; распределение населения каждого города по его территории так, что в центре плотность населения выше, а к окраинам уменьшается; по точкам с пороговым значением показателя проводят линии, ограничивающие заселенные территории.
Часто попытка создать непрерывную поверхность с помощью интерполяции по ареалам по данным, приуроченным только к точкам, приводит к неправильным результатам.
Пользователь обычно оценивает успешность применения метода субъективно и, главным образом, визуально. До сих пор многие исследователи используют ручную интерполяцию или интерполяцию «на глазок» (этот метод обычно невысоко оценивается географами и картографами, однако широко используется геологами). В настоящее время предпринимаются попытки «извлечь» познания экспертов с помощью методов создания баз знаний и ввести их в экспертную систему, осуществляющую интерполяцию.
Yandex.RTB R-A-252273-3
- 2. Пространственные данные и пространственная информация.
- 3. Основные этапы развития географических информационных систем
- 4. Перспективы развития географических информационных систем
- 6. Применение методов географической индикации в автоматизированной обработке пространственных данных.
- 7. Новые геоизображения
- 8. Гипергеоизображения
- 9.Оперативное геоинформационное картографирование.
- 12.Характеристика основных блоков картографических источников.
- 13. Дистанционное зондирование, как источник данных для гис.
- 16.Задачи, решаемые глобальными системами позиционирования.
- 18. Глобальные системы позиционирования и их подсистемы
- 19. Периферийные устройства ввода пространственных данных.
- 20.Сканеры – классификация, режимы работы, характеристики, наиболее популярные форматы файлов.
- 21.Периферийные устройства вывода информации.
- 22.Цифровые и электронные карты.
- 24.Виды цко и методы их создания.
- 25.Способы векторизации растра.
- 26. Представление географической информации в цифровых базах данных.
- 27.Концептуальная модель пространственной информации.
- 28. Позиционная и семантическая информация на электронной карте.
- 29.Представление точечных, линейных и площадных объектов в базе данных и на цифровой карте.
- 30.Растровые модели
- 31. Векторная модель данных гис
- 32. Векторная нетопологическая модель
- 33.Векторная Топологические модели
- 34. Пространственное моделирование, его задачи.
- 39. Применение пространственных моделей.
- 40. Автоматизированная генерализация тематических карт.