Розвиток астрономічної науки в Україні.
1.Що таке астрономія? 2. Які практичні питання вона допомагала вирішувати?
3. Який із стимулів розвитку астрономії для Вас найпереконливіший? Чому?
4. Що таке астрологія? 5. Чому, на Вашу думку, астрологія не є наукою?
1.1. Підготуйте усне повідомлення на тему «Мої знання і уявлення про Всесвіт».
ЛЕКЦІЯ3. Небесна сфера і добовий рух світил
План
Точки і лінії небесної сфери. Залежність висоти полюса світу від географічної широти місця спостереження.
Горизонтальна та екваторіальна системи координат.
Явища пов’язані з добовим обертанням Землі: схід та захід світил, кульмінації світил (моменти кульмінацій та висоти).
Зоряні каталоги і карти.
Видимий рух Сонця. Екліптика.
Невідповідність астрологічних уявлень знанням про екліптику.
Псевдонауковість астрології, критика астрологічних поглядів і завбачень.
І. НЕБЕСНА СФЕРА.
РУХ СВІТИЛ НА НЕБЕСНІЙ СФЕРІ
Небесна сфера. Сузір'я. Відстані
до небесних світил. Зоряні величини
1. Поняття небесної сфери Зоряне небо!.. Напевне, немає людини, яку б не вражала його витончена довершеність, його незбагненна краса і таємничість. Недаремно давні греки дали всьому зоряному Всесвіту назву космос, що означає - оздоба, прикраса. І в цьому немає нічого дивного! Свого часу М. Коперник висловився з захопленням: «...Бо що може бути чарівнішим від небосхилу, який вміщує у собі все прекрасне?»
Розмірковуючи над будовою зоряного Всесвіту, філософ Арістотель (384-322 pp.. до н. е.) стверджував: «Всесвіт - досконалий, а тому сферичний, бо сфера - єдина досконала фігура». Згідно з його розрахунками, радіус Всесвіту, тобто відстань до сфери зір, має бути у дев'ять разів більшою, ніж відстань від Землі до Сонця, а Земля, за його уявленнями, займає центральне положення у Всесвіті, адже «усі важкі тіла прямують до центра Землі, а оскільки будь-яке тіло прямує до центра всесвіту, то Земля мусить перебувати нерухомо в цьому центрі». Щоправда, інший відомий грецький філософ Демокріт (460-370 pp. до н. е.), а ближче до наших часів Галілей доводили протилежне: Всесвіт - безмежний, зорі перебувають на різних відстанях від Землі, але ця різниця у відстанях на око не сприймається, тому і здається, що зорі знаходяться на внутрішній поверхні деякої сфери. Це виявилось і справді так!
Мал. 3.1. Небесна сфера
Сьогодні ми знаємо, що немає сфери над нашими головами, знаємо, що зорі дуже далекі від нас, та поняття небесної сфери залишилось, бо виявилося дуже зручним при вивченні видимих рухів світил та визна-
ченні їхніх взаємних розташувань на небі.
Небесна сфера — це уявна сфера довільного радіуса, ft центрі якої знаходиться спостерігач і на яку спроектовано всі світила так, як він бачить їх у певний момент часу з певної точки простору.
Небесну сферу можна уявити у вигляді велетенського глобуса (довільного радіуса), схожого на глобус Землі, але розглядається він зсередини (мал. 3.1). Центр небесної сфери збігається з оком кожного окремого спостерігача. Як і на земному глобусі, на небесній сфері можна намалювати уявні лінії і певні точки, що дає змогу ввести систему небесних координат.
2. Сузір'я, їхня кількість і межі. Перше враження від спостереження зоряного неба - це незліченність зір і хаотичність їхнього розташування на небосхилі. Насправді ж зір, які можна побачити неозброєним оком, на небі Землі близько 6 000.
Видиме розташування зір на небі змінюється надзвичайно повільно. Без точних вимірів помітити його впродовж сотень і навіть тисяч років неможливо. Ця обставина дозволила за незапам'ятних часів намалювати по найяскравіших зорях перші характерні «зоряні візерунки» - сузір'я (мал. 3.2).
Більшість їхніх назв, які використовуються й сьогодні - це спадок від давніх греків. Так, у творі «Альмагест» Птолемея перелічено 48 сузір'їв. Нові сузір'я з'явилися на небі після перших подорожей у південну півкулю Землі під час великих географічних мандрівок XVI-XVII ст., а також після винайдення телескопа.
На початку XX ст. налічувалося 108 сузір'їв. Але на конгресі Міжнародного Астрономічного Союзу 1922 р. їхню кількість було зменшено до 88. Тоді ж було встановлено також нові межі сузір'їв, що існують і досі.
Сузір'я — це певна ділянка зоряного неба з чітко окресленими межами, що охоплює всі належні їй світила і яка має власну назву.
Мал. 3.2. Сузір'я на старовинній зоряній карті
У деяких сузір'ях виділяють менші групи зір, наприклад Плеяди та Пади в сузір'ї Тельця, Ківш у сузір'ї Великої Ведмедиці тощо.
Поряд із загальноприйнятими в астрономії назвами для окремих сузір'їв вживають і народні назви. Так, в Україні Велика Ведмедиця - це «Великий Віз», Мала Ведмедиця - «Малий Віз», Кассіопея -«Борона» чи «Пасіка», Дельфін - «Криниця», Пояс Оріона - «Косарі», Орел - «Дівчина з відрами», зоряне скупчення Пади, що утворюють голову Тельця, - «Чепіги», а зоряне скупчення Плеяди - «Стожари».
Про кожну істоту, яку давні люди уявляли у візерунку конкретної групи зір і ім'ям якої називали це сузір'я, було складено певну легенду. Наприклад: син грецького бога морів Посейдона, Оріон, був хоробрим і вправним мисливцем. Не було звіра, якого він не міг би вполювати. Розлючена богиня Артеміда, охоронниця звірів, підіслала до
Вперше надійні річні паралакси було виміряно в середині XIX ст. Дотепер відомо точні величини річних паралаксів майже для 100 000 зір, і на цій основі розроблено біля десяти інших методів визначення відстаней до віддаленіших об'єктів.
Оскільки відстані між астрономічними об'єктами дуже великі, то користуватися звичними одиницями довжини (метр, кілометр) незручно. Тому в астрономії використовують особливі одиниці для вимірювання відстаней: астрономічна одиниця (а. о.), яка дорівнює середній відстані Землі від Сонця (149 600 000 км), і парсек (пк), від слів «паралакс» і «секунда» - відстань, з якої середній радіус земної орбіти видно під кутом 1’ (секунда дуги). Часто використовують похідні одиниці: кілопарсек (1 кпк = 1 000 пк) і мегапарсек (1 Мпк = 1 000 000 пк).
M
Мал. 3.3. Горизонтальний паралакс Мал. 3.4. Річний паралакс зорі
Інколи використовується одиниця довжини світловий рік (св. p.). Це така відстань, яку проходить світло за один рік, поширюючись зі швидкістю 300 000 км/с.
Між одиницями довжини, що використовуються в астрономії, існують такі співвідношення: 1 пк = 3,26 св. р. = 206 265 а.о. — З • 1016 м; 1 св. р. = 0,3066 пк = 63 240 а. о. = 9,5 • 1015 м.
5. Зоряні величини. Те, що одні зорі яскравіші, а інші слабкіші, було помічено давно. З метою класифікації зір за їхнім блиском Гіппарх увів поняття видимої зоряної величини (цей термін до фізичних розмірів зорі не має ніякого відношення). Найяскравіші зорі він виділив у групу зір 1-ї величини, трохи слабкіші - 2-ї, а ледве помітні - 6-ї величини.
Згодом було прийнято зоряні величини позначати літерою m (від лат. «магнітуде» - «величина»), що проставляється як показник степеня справа вгорі біля цифри, яка вказує її числове значення (наприклад, 1т). Таким чином, замість того щоб говорити про освітленість, яку створює зоря, астрономи говорять: «блиск зорі дорівнює m зоряним величинам».
Було встановлено, що зоряна величина m і освітленість Е пов'язані залежністю
m = -14m -2,5 lgE. (3.1)
Неважко підрахувати, що зорі 6m рівно у 100 разів слабкіші за зорі 1m. Зазначимо, що найяскравіших зір з величинами яскравіше 1m налічується усього 13, від 1m до 2т - 27, а всіх зір до 6m - близько 6 000. Видима зоряна величина Сонця становить -26,8m.
Однак видима зоряна величина m не дає інформації про справжню потужність джерела світла (наприклад, близька свічка краще освітлює текст, ніж далека електрична лампочка). Тому для характеристики зір введено абсолютну зоряну величину М.
Абсолютна зоряна величина — це така зоряна величина, яку б мала зоря, якби перебувала від нас на відстані 10 пк (32,6 св. p.).
Оскільки освітленості змінюються обернено пропорційно квадрату відстані, то, використовуючи формулу (3.1), знайдемо співвідношення:
6. Каталоги небесних об'єктів. Окрім зір, на небі можна спостерігати багато інших об'єктів - туманності, зоряні скупчення, галактики тощо. Всі ці об'єкти занесено у спеціальні списки - каталоги.
Перші каталоги з'явилися ще до нашої ери. Сьогодні завдяки наполегливій багаторічній праці десятків і сотень астрономів маємо декілька різних каталогів небесних об'єктів.
У так званому «Боннському огляді неба» (BD, 1863 р.) наведено координати, зоряні величини і особливості спектрів 324 188 зір. Довгий час найвідомішим серед каталогів зір був дев'ятитомний «Каталог Генрі Дрепера» (HD), що містить інформацію про зоряні величини і спектри 225 300 зір (опублікований 1918-1924 pp.).
Один із найвідоміших каталогів незоряних об'єктів склав французький астроном Ш. Месьє (1780-1817). У ньому налічується 109 об'єктів - яскравих зоряних скупчень, туманностей і галактик. Зокрема,
галактика із сузір'я Андромеди записана у ньому за номером 31, тому її позначають як об'єкт М31 (читається «Месьє 31»). Існує «Новий генеральний каталог туманностей і зоряних скупчень» (NGC, 1888 р.), в якому галактика М31 має номер 224 (об'єкт NGC224).
Існують і інші каталоги, наприклад, «Tycho Catalogne», складений за результатами роботи супутника «HIPPARCOS» у 1989-1993 pp. Він містить відомості про понад один мільйон зоряних об'єктів. Складено каталоги дискретних радіо джерел, у тому числі квазарів - Третій, Четвертий і П'ятий Кембриджський каталоги (ЗС, 4С і 5С). Є каталоги інфрачервоних джерел, створені за результатами роботи супутника IRAS, та інші. Окрім традиційних, друкованих каталогів, останніми роками створено їхні комп'ютерні варіанти, що зручніше для користування. Робота над ними триває.
1. Що таке небесна сфера? 2. Скільки сузір'їв налічується на небесній сфері і коли уточнено їхні межі? З. Які позначення прийнято вживати для звичайних і для змінних зір? 4. Що таке видима зоряна величина і хто її увів? 5. Що означає запис «об'єкт М31», «об'єкт NGC224»?
3.1. Порівняйте взаємне розташування сузір'їв на карті зоряного неба.
3.2. Підготуйте усне повідомлення на тему «Міфи і легенди зоряного неба».
Основні точки і лінії небесної сфери. Зоряний час
Для визначення положення світила на небі необхідна певна система координат, подібна до тієї, що використовується на поверхні Землі.
Спосіб побудови сітки географічних координат відомий: на поверхні Землі виділено дві точки - географічні полюси, через них проведено дуги географічних меридіанів, один із них прийнято за початковий («нульовий»); проведено також земний екватор - велике коло, всі точки якого рівновіддалені від полюсів. Перебуваючи всередині небесної сфери, зробимо те ж саме. Слід лише домовитись, які точки на ній вважати «головними».
Мал. 4.1. точки і лінії небесної сфери
1. Основні точки і лінії небесної сфери. Визначення основних точок і ліній небесної сфери починають з найпростішого - з установлення вертикального напрямку за допомогою виска. Прямовисна лінія (лінія виска) перетинається з небесною сферою в двох точках, які називаються зеніт і надир. Ці назви запозичено в арабських спостерігачів: зеніт - «вершина», надир - «напрям ноги»; їх позначають відповідно літерами Z і Z' (мал. 4.1).
Зеніт — це верхня точка перетину прямовисної лінії з небесною сферою, надир — нижня точка (протилежна зеніту).
Велике коло, яке проходить через світило, точку зеніту і точку надиру, називається вертикал ьни м колом або вертикалом.
Через центр небесної сфери перпендикулярно до прямовисної лінії проведемо горизонтальну площину.
Велике коло, по якому горизонтальна площина перетинається з небесною сферою, називається математичним або справжнім горизонтом.
Справжній горизонт слід відрізняти від видимого горизонт у, який на суші є неправильною лінією з точками, що лежать вище або нижче справжнього горизонту, а на морі завжди є колом, площина якого паралельна площині справжнього горизонту.
Небесна сфера обертається навколо лінії, яка називається віссю світу; точки перетину осі світу з небесною сферою називаються п о люсами світу. Полюс, відносно якого небесна сфера обертається проти годинникової стрілки (для спостерігача, який перебуває у центрі сфери), називають Північним полюсом світу, протилежний йому -Південним полюсом світу.
У наш час Північний полюс світу перебуває поблизу зорі а Малої Ведмедиці, яку називають Полярною зорею.
Велике коло, площина якого перпендикулярна до осі світу, називають небесним екватором. Небесний екватор ділить небесну сферу на північну і південну півкулі.
З горизонтом небесний екватор перетинається у двох точках: у точці сходу Е і в точці заходу W. Велике коло, що проходить через полюси світу і зеніт, називають небесним меридіаном. Небесний меридіан перетинається з горизонтом у двох точках: у точці півночі N (вона ближча до Північного полюса світу) і в точці півдня S (вона ближча до Південного полюса світу).
Пряму лінію, що з'єднує точки півдня і півночі, називають полуденною лінією. Небесний меридіан ділить небесну сферу на дві півкулі - східну і західну. Велике коло, що проходить через полюси світу і через світило М, називають колом схилень.
Слідкуючи за тим, як упродовж року приекваторіальні сузір'я одне за одним зміщуються на вечірньому небі до тієї ділянки горизонту, за яку зайшло Сонце, можна зробити висновок, що Сонце здійснює видимий річний рух назустріч обертанню небесної сфери.
Велике коло, по якому центр диска Сонця здійснює свій видимий річний рух на небесній сфері, називається екліптикою.
Слово «екліптика» походить від грецького «екліпто» - «затемнюю», бо як тільки Місяць у своєму русі навколо Землі перетне екліптику в повню, настає затемнення Місяця. Якщо він перетинає екліптику у фазі нового Місяця, відбувається затемнення Сонця.
переходить з південної півкулі неба в північну. Через точку осіннього рівнодення û центр диска Сонця 22-23 вересня переходить з північної півкулі неба в південну.
2. Кульмінації світил. Внаслідок добового обертання небесної сфери кожне світило, описуючи на небі коло (тим менше, чим ближче світило до полюса світу), двічі перетинає небесний меридіан.
Явище проходження світила через небесний меридіан називається кульмінацією.
У верхній кульмінації світило буває найвище над горизонтом, у нижній кульмінації світило буває найнижче над горизонтом чи під горизонтом. Деякі зорі в момент верхньої кульмінації проходять через зеніт. В залежності від кутових відстаней, на яких світила знаходяться від полюсів світу, у кожній певній точці земної кулі вони можуть сходити і заходити, або ніколи не заходити, або ніколи не сходити.
Для світил, які в даній місцевості не заходять, ми бачимо і верхню, і нижню кульмінації; для світил, які сходять і заходять, - тільки верхню кульмінацію; для світил, які не сходять, обидві кульмінації відбуваються під лінією горизонту. Для спостерігача на північному полюсі Землі всі зорі північної небесної півкулі не заходять, а зорі південної небесної півкулі не сходять і навпаки. Для спостерігача на екваторі всі зорі обох небесних півкуль сходять і заходять.
Коли центр сонячного диска, перетинаючи небесний меридіан, знаходиться у верхній кульмінації, настає астрономічний полудень; під час нижньої кульмінації центра сонячного диска настає астрономічна північ.
3. Зоряний час. Періодичне обертання небесної сфери, повторення явищ сходу і заходу світил та їхніх кульмінацій дали людям природну одиницю лічби часу - добу. Залежно від того, що взяте за орієнтир на небі, відрізняють сонячну і зоряну добу.
Зоряна доба - це проміжок часу між двома послідовними верхніми кульмінаціями точки весняного рівнодення.
Зоряний час — це час s, що минув від верхньої кульмінації точки весняного рівнодення.
Як побачимо далі, знання зоряного часу значно полегшує отримання відповіді на питання про те, що можна бачити на небі в кожний заданий момент часу. 1. Скільки основних точок небесної сфери Вам відомо? 2. Які з цих точок займають постійне положення на небесній сфері, а які визначаються положенням спостерігача в кожному конкретному пункті земної поверхні? 3. Скільки основних ліній введено на небесній сфері? 4. Що таке кульмінація світила? 5. Що таке зоряна доба і зоряний час?
Системи небесних координат
Положення світила на небесній сфері (як і на поверхні Землі) визначається двома координатами. В астрономії розроблено декілька систем небесних координат, найвідоміші з них такі: горизонтальна та перша і друга екваторіальні системи координат.
1. Горизонтальна система координат. В горизонтальній системі координат використовують азимут А світила M і його висоту над горизонтом h (мал. 5.1). Основною площиною у цій системі є площина горизонту SN, а початком відліку - точка півдня S.
Азимут А світила M відлічують від точки півдня S уздовж горизонту в бік заходу до вертикала світила.
Висоту h світила M відлічують від горизонту вздовж вертикала до світила.
Як азимут А, так і висоту h світила вимірюють у градусах: азимут, від 0 до 360°, висоту - від 0 до +90° (над горизонтом) і від 0 до -90° (під горизонтом).
Недоліком цієї дуже простої системи координат є те, що кожна з координат світила безперервно змінюється внаслідок обертання небесної сфери.
2. Перша екваторіальна система координат, у цій системі координат використовують годинний кут світила t і його схилення Q (мал. 5.2).
Основною площиною в цій системі є площина екватора QQ', а початком відліку - найвища точка небесного екватора Q.
Годинний кут t світила M вимірюється від точки Q уздовж небесного екватора в бік заходу до кола схилення світила. Інакше кажучи, годинний кут світила t - це час, що минув від верхньої кульмінації світила.
Схилення 5 світила M відлічують від небесного екватора уздовж кола схилень до світила.
Годинний кут t світила вимірюється в годинах, хвилинах, секундах від 0Л (світило у верхній кульмінації) до 24° (знову у верхній кульмінації). Якщо годинний кут світила t = 12°, то світило перебуває в нижній кульмінації. Схилення світила ô вимірюють від 0° (світило на небесному екваторі) до +90° у північній півкулі небесної сфери і від 0° до -90° у південній півкулі. z
У цій системі одна з координат -схилення світила 5 - залишається незмінною під час обертання небесної сфери. Друга координата - годинний кут t - безперервно зростає, бо її відлік ведуть від моменту верхньої кульмінації світила в конкретному пункті Землі.
Отже, координата t у першій екваторіальній системі, як і горизонтальні координати Ain світила, мають своє певне значення тільки для деякого моменту часу.
Мал. 5.2. Екваторіальні системи координат
Тому, використовуючи ці координати, не можна побудувати зоряні карти або скласти каталог зір для постійного користування. Ця обставина є недоліком зазначеної системи координат, але її перевагою є порівняно легке вимірювання.
Для побудови зоряних карт і каталогів небесних об'єктів з метою постійного користування необхідно мати координати, які не змінюються внаслідок обертання небесної сфери. Для цього було введено ще одну систему екваторіальних координат.
Карти зоряного неба. Навчальні карти зоряного неба, з якими найчастіше доводиться працювати, виконані у формі прямокутника або круга. На карті, яка має вигляд прямокутника, по горизонталі відкладено пряме піднесення а, по вертикалі - схилення 5 світил. На карті, яка має вигляд круга, в центрі знаходиться Північний полюс світу. Пряме піднесення а зір проставлено на обводі карти. Радіальні лінії, що сходяться до центру карти - це проекції кіл схилень. Принаймні вздовж чотирьох із них проставляють схилення світил Q.
Дати на обводі карти-круга вказують положення Сонця на екліптиці. Його положення на екліптиці на кожну дату знаходимо, пересуваючись від цієї дати до центра карти уздовж радіальної прямої, на її перетині з екліптикою. Шкала зоряних величин розміщена за краєм карти-круга.
На обводі круга вказано, які зорі о певній годині вечора (ранку) 5 і 20 числа того чи іншого місяця перебувають на півдні, тобто поблизу південної частини небесного меридіана. І це робить карту зручною для користування: треба стати лицем на південь, поглянути на небо і тут же, ввімкнувши на мить ліхтарик, знайти на карті відповідний «візерунок зір».
- Предмет астрономії та його особливості.
- Галузі астрономії. Зв’язок астрономії з іншими науками.
- Задачі астрономії на різних історичних етапах.
- Найвидатніші творці астрономії.
- Астрономічні знання і розвиток цивілізації.
- Розвиток астрономічної науки в Україні.
- § 6. Сонячний час.
- § 7. Видимий річний рух Сонця. Тропічний і зоряний рік
- § 8. Видимий рух Місяця.
- § 9. Видимі рухи планет. Закони Кеплера
- § 10. Календар і його типи
- II. Методи та засоби астрономічних досліджень
- §11. Сучасні наземні та орбітальні телескопи
- § 12. Випромінювання: приймання та аналіз
- III. Наша планетна система
- III. Наша планетна система
- 13. Земля і Місяць
- §14. Планети земної групи
- §15. Планети-гіганти та їхні супутники
- § 16. Малі тіла у Сонячній системі
- §17. Формування планетної системи
- § 18. Основні відомості про Сонце
- §19. Будова Сонця. Джерела його енергії
- § 20. Сонячна активність та її вплив на Землю
- § 21. Звичайні зорі
- § 22. Подвійні зорі
- § 23. Фізичні змінні зорі
- § 24. Еволюція зір. Нейтронні зорі. Чорні діри
- § 25. Молочний Шлях.
- § 26. Підсистеми Галактики та її спіральна структура
- § 27. Галактики і квазари
- § 28. Проблеми космології
- § 29. Походження і розвиток Всесвіту
- § 30. Про пошуки життя за межами Землі
- §31. Людина у Всесвіті