18. Глобальные системы позиционирования и их подсистемы
К концу прошлого века в мире созданы две эксплуатационные спутниковые глобальные системы позиционирования, ознаменовавшие революционные изменения в геодезических измерениях. Это американская система Global Positioning System (GPS) и российская глобальная навигационная спутниковая система (ГЛОНАСС). Их инженерно-техническая реализация потребовала немалых затрат и десятков лет напряженной работы. В каждой системе выделяют три главные подсистемы (сегменты): наземного контроля и управления (НКУ), созвездия космических аппаратов (КА) и аппаратуры пользователей (АП). Подсистема НКУ состоит из станций слежения за КА, службы точного времени, главной станции с вычислительным центром и станций загрузки данных на борт спутников. Спутники проходят над контрольными пунктами дважды в сутки. Собранную на станциях слежения информацию об орбитах используют для прогнозирования координат спутников. После этого соответствующие данные загружают на борт каждого спутника. GPS — главная наземная станция находится на базе ВВС Колорадо-Спрингс. НКУ ГЛОНАСС включает Центр управления системой (ЦУС), находящийся под Москвой, центральный синхронизатор (ЦС) с высокоточным стандартом частоты и времени для синхронизации системы и сеть станций слежения на территории России. В каждой спутниковой системе подсистемы КА содержат по 24 основных работающих и по несколько резервных спутников. Спутники равномерно распределены в околоземном пространстве на высотах около 20 тыс. км. На каждом спутнике установлены солнечные батареи питания, двигатели корректировки орбит, атомные эталоны частоты-времени, аппаратура для приема и передачи радиосигналов. Благодаря атомным эталонам частоты-времени генерируемые на спутниках электромагнитные колебания обладают весьма высокой стабильностью. Это чрезвычайно важно, так как все способы измерения дальностей основаны на определениях времени прохождения электромагнитной волны от спутника до приемника. Для измерения дальностей передатчики на всех спутниках излучают радиоволны на двух частотах. Две частоты нужны для того, чтобы исключить из измерений существенные временные задержки, возникающие при прохождении радиоволн через ионосферу. В GPS все спутники работают на одинаковых частотах. В ГЛОНАСС значения несущих у каждого спутника свои. Основу подсистемы АП (аппаратуры пользователей) составляет спутниковый приемник. Аппаратура спутника и спутниковый приемник образуют радиодальномер. Приемник принимает радиоволны, передаваемые спутником, и сравнивает их с электрическими колебаниями, выработанными в самом приемнике. В результате определяется время распространения радиоволны, а затем и дальность от приемника до космического аппарата. Дальности определяют двумя методами: кодовым методом и фазовым методом. Кроме этого, в приемник передается так называемое навигационное сообщение, несущее необходимую для определения координат информацию. Спутниковые приемники достигли высокого совершенства. Созданы приемники, ориентированные как на использование только спутников одной системы, главным образом GPS, так и на одновременное использование спутников GPS и ГЛОНАСС. Точность определения координат зависит от числа видимых КА. Использование спутниковых группировок двух систем позволяет увеличить количество видимых спутников и повысить точность определений координат примерно в 1,5 раза. В городских условиях, особенно при наличии множества высотных зданий, одна система не в состоянии обеспечить непрерывные измерения в течение длительного времени. Применение комплекса ГЛОНАСС/GPS практически позволяет удвоить продолжительность производительного времени по сравнению со временем использования только спутников GPS. Все современные спутниковые приемники являются многоканальными с числом каналов от 6 и более. Каждый канал следит за своим спутником. При измерениях проблемой является срыв сигналов на трассах распространения радиоволн из-за таких препятствий, как рельеф, покрытые листвой деревья, здания и другие сооружения. Чем больше каналов, тем легче преодолеть эти трудности и найти необходимое количество видимых спутников.
- 2. Пространственные данные и пространственная информация.
- 3. Основные этапы развития географических информационных систем
- 4. Перспективы развития географических информационных систем
- 6. Применение методов географической индикации в автоматизированной обработке пространственных данных.
- 7. Новые геоизображения
- 8. Гипергеоизображения
- 9.Оперативное геоинформационное картографирование.
- 12.Характеристика основных блоков картографических источников.
- 13. Дистанционное зондирование, как источник данных для гис.
- 16.Задачи, решаемые глобальными системами позиционирования.
- 18. Глобальные системы позиционирования и их подсистемы
- 19. Периферийные устройства ввода пространственных данных.
- 20.Сканеры – классификация, режимы работы, характеристики, наиболее популярные форматы файлов.
- 21.Периферийные устройства вывода информации.
- 22.Цифровые и электронные карты.
- 24.Виды цко и методы их создания.
- 25.Способы векторизации растра.
- 26. Представление географической информации в цифровых базах данных.
- 27.Концептуальная модель пространственной информации.
- 28. Позиционная и семантическая информация на электронной карте.
- 29.Представление точечных, линейных и площадных объектов в базе данных и на цифровой карте.
- 30.Растровые модели
- 31. Векторная модель данных гис
- 32. Векторная нетопологическая модель
- 33.Векторная Топологические модели
- 34. Пространственное моделирование, его задачи.
- 39. Применение пространственных моделей.
- 40. Автоматизированная генерализация тематических карт.