Нейронные сети
Первая работа, которая теперь по общему признанию считается относящейся к искусственному интеллекту, была выполнена Уорреном Мак-Каллоком и Уолтером Питтсом. Они черпали вдохновение из трех источников: знание основ физиологии и назначения нейронов в мозгу; формальный анализ логики высказываний, взятый из работ Рассела и Уайтхеда; а также теория вычислений Тьюринга.
Мак-Каллок и Питтс предложили модель, состоящую из искусственных нейронов, в которой каждый нейрон характеризовался как находящийся во «включенном» или «выключенном» состоянии, а переход во «включенное» состояние происходил в ответ на стимуляцию достаточного количества соседних нейронов.
Состояние нейрона рассматривалось как «фактически эквивалентное высказыванию, в котором предлагается адекватное количество стимулов». Работы этих ученых показали, например, что любая вычислимая функция может быть вычислена с помощью некоторой сети из соединенных нейронов и что все логические связки ("И", "ИЛИ", "НЕ" и т.д.) могут быть реализованы с помощью простых сетевых структур.
Кроме того, Мак-Каллок и Питтс выдвинули предположение, что сети, структурированные соответствующим образом, способны к обучению. Дональд Хебб продемонстрировал простое правило обновления для модификации количества соединений между нейронами. Предложенное им правило, называемое теперь правилом хеббовского обучения, продолжает служить основой для моделей, широко используемых и в наши дни.
-
Содержание
- Природа рационального
- Рождение искусственного интеллекта
- Нейронные сети
- Экспертные системы
- Тест Тьюринга
- Модели и методы исследований
- Символьное моделирование мыслительных процессов
- Работа с естественными языками
- Представление и использование знаний
- Машинное обучение
- Биологическое моделирование искусственного интеллекта
- Робототехника
- Машинное творчество